Cosine Transformed Chaos Function and Block Scrambling-Based Image Encryption

Author(s):  
Shelza Dua ◽  
Bharath Nancharla ◽  
Maanak Gupta

The authors propose an image encryption process based on chaos that uses block scrambling to reduce the correlation among the neighboring pixels and random order substitution for slightly changing the value of the pixel. The chaotic sequence for encrypting the image is generated by using two 3D logistic maps called enhanced logistic map and intertwining logistic map; the cos function helps in reducing linearity. The entire encryption process is composed of scrambling, image rotation, and random order substitution. Scrambling is used for permuting the pixels in the image so that we can reduce the correlation among the neighboring pixels, and this is followed by image rotation which can ensure that shuffling of pixels is done to the remaining pixels in the image, and at last the authors use random order substitution where they bring the small change in the pixel value. The proposed method has the capability of encrypting digital colored images into cipher form with high security, which allows only authorized ones who hold the correct secret key to decrypt the images back to original form.

Author(s):  
Mohit Dua ◽  
Arun Suthar ◽  
Arpit Garg ◽  
Vaibhav Garg

Abstract The chaos-based cryptography techniques are used widely to protect digital information from intruders. The chaotic systems have some of special features that make them suitable for the purpose of encryption. These systems are highly unpredictable and are highly sensitive or responsive to the initial conditions, also known as butterfly effect. This sensitive dependence on initial conditions make these systems to exhibit an intricate dynamical behaviour. However, this dynamical behaviour is not much complex in simple one-dimensional chaotic maps. Hence, it becomes easy for an intruder to predict the contents of the message being sent. The proposed work in this paper introduces an improved method for encrypting images, which uses cosine transformation of 3-D Intertwining Logistic Map (ILM). The proposed approach has been split into three major parts. In the first part, Secure Hash Function-256 (SHA-256) is used with cosine transformed ILM (CT-ILM) to generate the chaotic sequence. This chaotic sequence is used by high-efficiency scrambling to reduce the correlations between the adjacent pixels of the image. In the second part, the image is rotated to move all the pixels away from their original position. In the third part, random order substitution is applied to change the value of image pixels. The effectiveness of the proposed method has been tested on a number of standard parameters such as correlation coefficient, Entropy and Unified average change in intensity. The proposed approach has also been tested for decryption parameters like mean square error and peak signal to noise ratio. It can easily be observed from the obtained results that the proposed method of image encryption is more secure and time efficient than some earlier proposed techniques. The approach works for both color and grey scale images.


2019 ◽  
Vol 11 (9) ◽  
pp. 3771-3786 ◽  
Author(s):  
Mohit Dua ◽  
Aishwarya Wesanekar ◽  
Vishwas Gupta ◽  
Mayank Bhola ◽  
Shelza Dua

2012 ◽  
Vol 241-244 ◽  
pp. 2728-2731
Author(s):  
Yong Zhang

Some chaos-based image encryption schemes using plain-images independent secret code streams have weak encryption security and are vulnerable to chosen plaintext and chosen cipher-text attacks. This paper proposed a two-level secret key image encryption method, where the first-level secret key is the private symmetric secret key, and the second-level secret key is derived from both the first-level secret key and the plain image by iterating piecewise linear map and Logistic map. Even though the first-level key is identical, the different plain images will produce different second-level secret keys and different secret code streams. The results show that the proposed has high encryption speed, and also can effectively resist chosen/known plaintext attacks.


Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 779
Author(s):  
Wenjin Hou ◽  
Shouliang Li ◽  
Jiapeng He ◽  
Yide Ma

Based on a logistic map and Feigenbaum map, we proposed a logistic Feigenbaum non-linear cross-coupled hyperchaotic map (LF-NCHM) model. Experimental verification showed that the system is a hyperchaotic system. Compared with the existing cross-coupled mapping, LF-NCHM demonstrated a wider hyperchaotic range, better ergodicity and richer dynamic behavior. A hyperchaotic sequence with the same number of image pixels was generated by LF-NCHM, and a novel image-encryption algorithm with permutation that is dynamically related to plaintext pixels was proposed. In the scrambling stage, the position of the first scrambled pixel was related to the sum of the plaintext pixel values, and the positions of the remaining scrambled pixels were related to the pixel values after the previous scrambling. The scrambling operation also had a certain diffusion effect. In the diffusion phase, using the same chaotic sequence as in the scrambling stage increased the usage rate of the hyperchaotic sequence and improved the calculation efficiency of the algorithm. A large number of experimental simulations and cryptanalyses were performed, and the results proved that the algorithm had outstanding security and extremely high encryption efficiency. In addition, LF-NCHM could effectively resist statistical analysis attacks, differential attacks and chosen-plaintext attacks.


2018 ◽  
Vol 32 (09) ◽  
pp. 1850115 ◽  
Author(s):  
Manjit Kaur ◽  
Vijay Kumar

In this paper, a robust image encryption technique that utilizes Fourier–Mellin moments and intertwining logistic map is proposed. Fourier–Mellin moment-based intertwining logistic map has been designed to overcome the issue of low sensitivity of an input image. Multi-objective Non-Dominated Sorting Genetic Algorithm (NSGA-II) based on Reinforcement Learning (MNSGA-RL) has been used to optimize the required parameters of intertwining logistic map. Fourier–Mellin moments are used to make the secret keys more secure. Thereafter, permutation and diffusion operations are carried out on input image using secret keys. The performance of proposed image encryption technique has been evaluated on five well-known benchmark images and also compared with seven well-known existing encryption techniques. The experimental results reveal that the proposed technique outperforms others in terms of entropy, correlation analysis, a unified average changing intensity and the number of changing pixel rate. The simulation results reveal that the proposed technique provides high level of security and robustness against various types of attacks.


Author(s):  
Zhe Liu ◽  
Mee Loong Yang ◽  
Wei Qi Yan

In this chapter, the authors propose an improved image encryption algorithm based on digital watermarking. The algorithm combines discrete wavelet transform (DWT), discrete cosine transform (DCT), and singular value decomposition (SVD) together in a DWT-DCT-SVD framework to improve the robust watermarking technique. The secret image is embedded into both high-frequency and low-frequency sub-bands of the host image; this makes it difficult to be attacked in all the sub-bands. To reduce the size of a secret key, the authors use a logistic map to generate random images so as to replace the host images. They tested the algorithm by using five types of attacks and the results indicate that the proposed algorithm has higher robustness than traditional chaotic scrambling method and the DRPE method. It shows strong resilience against the five types of attacks as well as statistical attacks.


2014 ◽  
Vol 28 (06) ◽  
pp. 1450023 ◽  
Author(s):  
XING-YUAN WANG ◽  
TIAN WANG ◽  
DA-HAI XU ◽  
FENG CHEN

In this paper, we present a selective image encryption system based on couple spatial chaotic systems, the cascade one-dimensional Logistic map and high-dimensional spatial chaotic system has been used to generate the adequate encryption sequence, then the selective gray-level image encryption is implemented with the sequence, which can greatly improve the encryption performance and efficiency. In addition, we also adopt an index array to control the generation of the secret key, a completely different cipher text will be obtained if a pixel's value is altered in the original image, which can resist the differential attack effectively.


Sign in / Sign up

Export Citation Format

Share Document