Importance of Artificial Environment Conditions on Plant Biotechnology, Plant Growth, and Secondary Metabolites

Author(s):  
Ahmed M.M. Gabr ◽  
Hanan S. Ebrahim ◽  
Amal A El-Ashry ◽  
Mohamed K. El-Bahr

Plant biotechnology (micropropagation, secondary metabolites, etc.) is the science of growing different plant cells under controlled artificial environment conditions. Thence, successful plant biotechnology depends on the techniques of plant tissue culture. Plant tissue culture laboratories have style needs that distinguish them from alternative forms of laboratories and a few wants are distinctive for successfully plant growth as well as production of plant secondary metabolites. The most often manipulated physical parameters are light, temperature, and relative humidity within the culture vessels. The light is most important physical factor which might have an effect on metabolite production. Light not only affects the in vitro growth and developments but also very important factor affecting the production of plant secondary metabolites. The action of light on plants happens in the most part in two ways. In the first way, the light source gives the energy required by the plant for photosynthesis. In the second way, the signal which gotten by photoreceptors it regulates plant metabolism, differentiation, and growth. Temperature is different with the different in vitro life cycle, as well as the aim of production such as plant growth or secondary metabolites production.

Author(s):  
Srijan Goswami ◽  
Debraj Modak ◽  
Munmun Modak

In the chapter, the authors describe how a plant can be selected as a natural indicator of heavy metal (mercury) contamination, how one can select a plant species to monitor a particular type of heavy metal and use those plants to remove the contaminants from the area under consideration. The chapter also contains a brief idea of environmental contamination by heavy metals and how the situation can be managed by the techniques of modern plant biotechnology. The authors add some reports and data of their in-vitro studies of mercury toxicity on Ananas sp., generally known as pineapple, for better understanding of the text.


2019 ◽  
Vol 29 (1) ◽  
pp. 111-119
Author(s):  
Khushboo Rawal ◽  
Hareshkumar Keharia

Plant tissue culture has revolutionized the field of plant biotechnology. However, there are certain obstacles which overall restrain the output of the plant tissue culturing. One of them is contamination of the tissue culture stock which is a major problem limiting the output. Aegle marmelos (L.) is a medicinal plant whose genotype qualities are maintained through clonal propagation of nodal segment as an explant. It harbors plethora of fungi which curbs the successful in vitro propagation. Chemical fungicide like bavistin is used to prevent the contamination in tissue culture which raises the environmental concerns. Thus, use of microbially derived antifungals can help in preventing fungal growth with benefit of positively impacting the plant growth. Here, authors investigated the use of heat stable lipopeptides which are secondary metabolites derived from Bacillus amyloliquefaciens AB30a for prevention of contamination in tissue culturing of nodal explants of A. marmelos positively impacting its in-vitro propagation. Plant Tissue Cult. & Biotech. 29(1): 111-119, 2019 (June)


2021 ◽  
Vol 12 ◽  
Author(s):  
Abdoulaye Soumare ◽  
Abdala G. Diédhiou ◽  
Naveen Kumar Arora ◽  
Laith Khalil Tawfeeq Al-Ani ◽  
Mariama Ngom ◽  
...  

Plant growth promoting microbes (PGPMs) play major roles in diverse ecosystems, including atmospheric nitrogen fixation, water uptake, solubilization, and transport of minerals from the soil to the plant. Different PGPMs are proposed as biofertilizers, biostimulants, and/or biocontrol agents to improve plant growth and productivity and thereby to contribute to agricultural sustainability and food security. However, little information exists regarding the use of PGPMs in micropropagation such as the in vitro plant tissue culture. This review presents an overview of the importance of PGPMs and their potential application in plant micropropagation. Our analysis, based on published articles, reveals that the process of in vitro classical tissue culture techniques, under strictly aseptic conditions, deserves to be reviewed to allow vitroplants to benefit from the positive effect of PGPMs. Furthermore, exploiting the potential benefits of PGPMs will lead to lessen the cost production of vitroplants during micropropagation process and will make the technique of plant tissue culture more efficient. The last part of the review will indicate where research is needed in the future.


2016 ◽  
Vol 128 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Siham Esserti ◽  
Mohamed Faize ◽  
Lalla Aicha Rifai ◽  
Amal Smaili ◽  
Malika Belfaiza ◽  
...  

Planta ◽  
2018 ◽  
Vol 248 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Claudia A. Espinosa-Leal ◽  
César A. Puente-Garza ◽  
Silverio García-Lara

2018 ◽  
Vol 28 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Mohammad Ali ◽  
Shefali Boonerjee ◽  
Mohammad Nurul Islam ◽  
Mihir Lal Saha ◽  
M Imdadul Hoque ◽  
...  

The endogenous bacterial contamination of plant tissue culture materials and their possible control was studied. Nine bacterial isolates were isolated from the contaminated tissue culture materials viz. potato and tea. On the basis of morphology and biochemical characters of nine isolates, seven were identified as Gram positive belonging to Bacillus alcalophilus, B. circulans, B. infantis, B. lentus, B. schlegelii, B. pumilus and B. subtilis. Remaining two were Gram negative and identified as Enterobacter cloacae sub. sp. dissolvens and Pantoea agglomerans. Molecular analysis was conducted on the basis of 16S rDNA sequence to confirm three isolates. Culture and sensitivity test was carried out to screen out the antibiotic sensitivity where streptomycin (S-10), polymyxin (PB-300) and gentamicin (CN-120) antibiotics were found to be effective against all bacterial isolates. The culture and sensitivity test reflected the feasibility to control or eliminate the contaminant bacteria during in vitro culture of plant which is very much required in the commercial tissue culture production.Plant Tissue Cult. & Biotech. 28(1): 99-108, 2018 (June)


2017 ◽  
pp. 24-33
Author(s):  
Swetnisha, Ajitabh Bora, H.K. Gogoi, P.S. Raju

Capsaicin, a secondary metabolite produced in capsicum, is in high demand in pharmaceutical industry because of its various medicinal properties. Currently, the supply of capsaicin depends upon its extraction from capsicum fruits. This limits the production of capsaicin as it depends upon agricultural produce. The current review has compiled information from various literature published on chemistry and importance of capsaicin along with its method of production. It also reviews the process of in vitro production of capsaicin through plant tissue culture, strategies of increasing capsaicin accumulation and its advantages over extraction from fruits and artificial synthesis.


Sign in / Sign up

Export Citation Format

Share Document