fucus spiralis
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 14)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 12 (5) ◽  
pp. 7075-7091

The extract of Fucus spiralis (FS) was tested as a corrosion inhibitor of carbon steel in a 1M HCl medium. The anti-corrosion properties were analyzed by gravimetric and electrochemical techniques such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The surface characterization of carbon steel submerged in the optimal solution was carried out using UV-Visible, UV-Vis-NIR, and Optical microscopy analyses. Electrochemical and gravimetric results demonstrated that inhibitory efficiencies increase with increasing inhibitor concentration and the efficiency reaches 87% at a concentration of 0.5 g/L. According to Tafel extrapolated polarisation measurements, the FS also worked as a mixed-type corrosion inhibitor and changed the mechanism of anodic reactions. EIS analysis showed that a depressed capacitive loop dominates the Nyquist plot of impedance and enhances the polarization resistance (Rp) to 161.9 Ω cm2 with a reduction of the double layer capacity (Cdl) of carbon steel to 61.8 μF/cm2. This protection is assured by an adsorption mechanism based on the isothermal Langmuir adsorption model, which positively affects the thermodynamic parameters. UV-Visible, UV-Vis-NIR analyses exhibited that inhibitor decreases the iron oxides like hematite, Magnetite, and Goethite, Maghemite, Lepidocrocite, δ-FeOOH of the metal surface and delays the dissolution of the bare metal of iron to the ferrous ions, notably that optical morphology showed that FS extract decreases the aggressivity of HCl.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5807
Author(s):  
Tatiana Pereira ◽  
André Horta ◽  
Sónia Barroso ◽  
Susana Mendes ◽  
Maria M. Gil

Due to the high consumption of fat-rich processed foods, efforts are being done to reduce their saturated fat (SFA) contents and replace it with polyunsaturated fatty acids (PUFA), creating a necessity to find alternative PUFA sources. Macroalgae, being a promising natural source of healthy food, may be such an alternative. The fatty acid (FA) profile of Fucus spiralis, Bifurcaria bifurcata, Ulva lactuca, and Saccorhiza polyschides were determined through direct transesterification and their seasonal variation was studied. F. spiralis showed the highest FA content overall, B. bifurcata presented the higher PUFA amounts, and U. lactuca and S. polyschides the higher SFA. The production of FA was shown to be influenced by the seasons. Spring and summer seemed to induce the FA production in F. spiralis and B. bifurcata while in U. lactuca the same was verified in winter. U. lactuca presented a ω6/ω3 ratio between 0.59 and 1.38 while B. bifurcata presented a ratio around 1.31. The study on the seasonal variations of the macroalgal FA profile can be helpful to understand the best season to yield FA of interest, such as ALA, EPA, and DHA. It may also provide valuable information on the best culturing conditions for the production of desired FAs.


2021 ◽  
Vol 9 (9) ◽  
pp. 927
Author(s):  
William G. Ambrose ◽  
Paul E. Renaud ◽  
David C. Adler ◽  
Robert L. Vadas

The settlement of spores and larvae on hard substrates has been shown to be influenced by many factors, but few studies have evaluated how underlying bedrock may influence recruitment. The characteristics of coastal rock types such as color, heat capacity, mineral size, and free energy have all been implicated in settlement success. We examined the influence of naturally occurring rock types on the initial attachment of zygotes of the brown alga Fucus spiralis Linnaeus 1753. We also assessed the dislodgment of zygotes on four bedrock types after initial attachment in laboratory experiments using wave tanks. Settling plates were prepared from limestone, basalt, schist, and granite, found in the region of Orrs Island, Maine, USA. The plate surfaces tested were either naturally rough or smooth-cut surfaces. We measured the density of attached zygotes after 1.5 h of settlement and subsequently after a wave treatment, in both winter and summer. The pattern of initial attachment was the same on natural and smooth surfaces regardless of season: highest on limestone (range 7.0–13.4 zygotes/cm2), intermediate on schist (1.8–8.5 zygotes/cm2) and basalt (3.5–14.0 zygotes/cm2), and lowest on granite (0.8–7.8 zygotes/cm2). Patterns of survivorship following the wave treatment were similar to those of initial settlement with the mean survivorship varying from 60.1% (SE = 3.8) (limestone, smooth substrate) to 31.8% (SE = 0.59) (granite, natural substrate), and with the highest mean survival on limestone, basalt, and schist, and the lowest on granite. Our results suggest that rock type has a significant effect on zygote attachment and persistence. Patterns of attachment were the same on smooth and rough surfaces, indicating that surface roughness is not the predominant factor controlling the difference in successful attachment among rock types. Other properties of bedrock, possibly grain size, surface free energy, or chemical interaction with the adhesives used by the zygotes, directly affect the attachment of these algal propagules. These results suggest that patterns of benthic community structure could be determined in part by the distribution of bedrock types.


Author(s):  
J. I. Bungudu ◽  
Lorrie M. Murphy

Metformin hydrochloride is an anti-hyperglycaemic drug that is widely prescribed in the management of noninsulin diabetes mellitus (NIDDM). However, metformin does not undergo complete metabolism in the body thereby excreting significant amount through urine and eventual discharged into the water bodies. Therefore, this work investigates the possibility bio-sorption of metformin by Fucus spiralis seaweed. High performance liquid chromatography (HPLC) and FITR was used for quantifying metformin biosorption. The result shows that Fucus spiralis is a potential biosbent for metformin removal in aqueous solution. The highest removal was up to 74% at 50 µg/mL. It can be mentioned here that this study is the first of it kind in testing seaweed for metformin biosorption. In conclusion, biomass (Fucus spiralis) was tested for its efficiency in metformin removal in aqueous solution. Adsorption studies revealed that F. spiralis can be used as potential adsorbent for metformin uptake. Very limited literature investigates the application of seaweeds species for pharmaceutical remediation. Remediation of waste and surface water using readily available adsorbent such as seaweed will be useful as it relates to human health and environmental contamination. HPLC was used in this study but other spectroscopic technique such as UV/vis could be explored to ascertain the optimized method. Further studies would be needed to test other algal species for metformin bio sorption.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4287
Author(s):  
Belén Almeida ◽  
Sónia Barroso ◽  
Ana S. D. Ferreira ◽  
Pedro Adão ◽  
Susana Mendes ◽  
...  

Fucus spiralis that was collected in the four seasons was submitted to an extraction with ethanol:water (crude extracts Et80), followed by a liquid–liquid fractionation with organic solvents (fraction He from n-hexane; aqueous fractions AQ1, AQ2, AQ3 and AQ4; ethyl acetate fraction EA), with the aim of obtaining phlorotannin-enriched extracts. All the extracts (Et80, He, AQ1, AQ2, AQ3, AQ4 and EA) that were obtained for the F. spiralis of the four seasons were evaluated for their antioxidant capacity and total phenolic compounds. The summer extracts presented the highest contents in polyphenols (TPC), as well as the highest ferric reducing antioxidant power (FRAP), when compared to the samples from the other seasons. The reductive percentage of the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) compound was similar between the seasons. For all the seasons, the EA extract showed the highest polyphenol content (TPC), and the highest antioxidant capacity (highest ferric reducing power (FRAP) and lowest concentration needed to reduce 50% of the DPPH compound), which is in agreement with a phlorotannin-enriched fraction. This study revealed that the polyphenol content and antioxidant power of the F. spiralis extracts are influenced by the time of harvest, as well as by the solvents used for their extraction.


Food Control ◽  
2021 ◽  
pp. 108416
Author(s):  
Marcos Trigo ◽  
Pedro Nozal ◽  
José M. Miranda ◽  
Santiago P. Aubourg ◽  
Jorge Barros-Velázquez

2021 ◽  
Vol 44 (3) ◽  
pp. 126189
Author(s):  
Ofélia Godinho ◽  
Raquel Botelho ◽  
Luciana Albuquerque ◽  
Sandra Wiegand ◽  
Nicolai Kallscheuer ◽  
...  
Keyword(s):  

2021 ◽  
Vol 44 (1) ◽  
pp. 126166 ◽  
Author(s):  
Laura A. Wolter ◽  
Matthias Wietz ◽  
Lisa Ziesche ◽  
Sven Breider ◽  
Janina Leinberger ◽  
...  

2020 ◽  
Vol 11 (2) ◽  
pp. 8978-8995

Algae are well-known to be exceptionally rich sources for biologically active metabolites and have recently gained recognition for their therapeutic applications. This study is designed to assess the phenolic composition of five algae and evaluate their antioxidant and protective effects against hydrogen peroxide (H2O2) induced cytotoxicity in the protozoa Tetrahymena pyriformis. Successive fractionations of five algae using five solvents were performed. Spectrophotometric methods were used to determine the total phenolic and flavonoid contents. The antioxidant capacities of fractions of these five algae were assessed through three in vitro tests (DPPH, ABTS, and FRAP). The active fractions were further evaluated for their ability to attenuate H2O2 induced toxicity in T. pyriformis. Fucus spiralis has rich phenolic contents from chloroform (CHCl3) and ethyl acetate (EtOAc) fractions, averaging 65±0.90 µg GAE/mg fraction and 429.81±9.36 µg GAE /mg fraction, respectively. This algae also showed significant FRAP (261.53±5.40 and 117.66±0.40 µg /mL), DPPH (IC50: 49.51±3.29 and 55.48±0.20 µg) and ABTS (IC50: 50.73±2.62 and 219.82±5.47 µg /mL) results. The treatment with 300 µM H2O2-induced oxidative stress as shown by the significant decrease in the cell viability and the number of cells increases in CAT, SOD, GPx activities, and the levels of GSH and MDA. However, the treatment with EtOAc and CHCl3 fractions from F. spiralis appeared to be effective against cytotoxicity and the redox changes induced by H2O2. The results indicate that F. spiralis is a promising source of antioxidant and nutraceutical compounds for pharmaceutical purposes.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 611 ◽  
Author(s):  
Rafaela Freitas ◽  
Alice Martins ◽  
Joana Silva ◽  
Celso Alves ◽  
Susete Pinteus ◽  
...  

Skin aging is a biological process influenced by intrinsic and extrinsic factors. The last ones, mainly exposure to UV radiation, increases reactive oxygen species (ROS) production leading to a loss of extracellular matrix, also enhanced by enzymatic degradation of matrix supporting molecules. Thus, and with the growing demand for eco-friendly skin products, natural compounds extracted from brown seaweeds revealed to be good candidates due to their broad range of bioactivities, especially as antioxidants. The aim of this study was to assess the dermo-cosmetic potential of different fractions obtained from the brown seaweed Fucus spiralis. For this purpose, in vitro antioxidant (Total Phenolic Content (TPC), 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, Ferric Reducing Antioxidant Power (FRAP), Oxygen Radical Absorbance Capacity (ORAC)), anti-enzymatic (collagenase, elastase and hyaluronidase), antimicrobial, anti-inflammatory (NO production) and photoprotective (ROS production) capacities were evaluated. Although nearly all fractions evidenced antioxidant effects, fraction F10 demonstrated the highest antioxidant ability (EC50 of 38.5 µg/mL, DPPH assay), and exhibited a strong effect as an inhibitor of collagenase (0.037 µg/mL) and elastase (3.0 µg/mL). Moreover, this fraction was also the most potent on reducing ROS production promoted by H2O2 (IC50 of 41.3 µg/mL) and by UVB (IC50 of 31.3 µg/mL). These bioactivities can be attributed to its high content of phlorotannins, as evaluated by LC-MS analysis, reinforcing the potential of F. spiralis for further dermatological applications.


Sign in / Sign up

Export Citation Format

Share Document