Analysis of Black-Hole Attack With Its Mitigation Techniques in Ad-hoc Network

Author(s):  
Ayasha Malik ◽  
Siddharth Gautam ◽  
Naghma Khatoon ◽  
Nikhil Sharma ◽  
Ila Kaushik ◽  
...  

In wired and wireless communication, providing security is extremely important. It is a very challenging issue. But the flying evolution in communication technology has triggered to sturdy research interest in wireless networks. The characteristics of wireless networks make this issue even more challenging. In Ad-hoc networks, there is a huddle of autonomous nodes, which dynamically form a temporary multi-hopped, peer-to-peer radio network, without any use of predefined infrastructure. These nodes are generally mobile in nature, and to connect these nodes, the connectionless links are used. These nodes have the potential to self-organize, self-configure, and self-arrangement. Ad-hoc networks do not have fixed structure due to their dynamic nature. Ad-hoc networks are inherently prone to a number of security threats. Lack of fixed infrastructure, use of wireless link for communication, and mobility of nodes make Ad-hoc networks extremely receptive to hostile attacks, blackhole attack being one among them, which can be implemented effortlessly.

Author(s):  
Bodhy Krishna .S

A wireless ad hoc network is a decentralized type of wireless network. It is a type of temporary computer-to-computer connection. It is a spontaneous network which includes mobile ad-hoc networks (MANET), vehicular ad-hoc networks (VANET) and Flying ad-hoc networks (FANET). A MANET is a network that has many free or autonomous nodes often composed of mobile devices that can operate without strict top-down network administration [1]. A VANET is a sub form of MANET. It is a technology that uses vehicles as nodes in a network to create a mobile network. FANET is an ad-hoc network of flying nodes. They can fly independently or can be operated distantly. This paper discusses the characteristics of these three ad-hoc networks.


Author(s):  
Tamaghna Acharya ◽  
Santi P. Maity

The acute scarcity of radio frequency spectrum has inspired to think of a new communication technology where the devices are expected to be able to sense and adapt to their spectral environment, thereby appearing as cognitive radios (CR) who can share opportunistically the bands assigned to primary users (PUs). At the same time, low cost, increased coverage, enhanced capacity, infrastructure-less configuration, and so forth, become the essence of future wireless networks. Although the two research fields came up independently, in due time it is observed that CR has a promising future and has excellent applications in wireless networks. To this aim, this chapter explores some scope of integration in CR and ad hoc networks (called here CRAHNETs) in some specific design perspective. First, a brief literature review on CR power allocation and energy aware routing in wireless ad hoc networks (WANETs) is done that highlights the importance for the scope of their integration. Then, power allocation in CRAHNETs with extended network lifetime is considered as an example problem. More specifically, the design problem is: given a set of paths (routes) between a pair of source (S) and destination (D) nodes in CRAHNETs, how to allocate optimal power to the source and relay nodes such that outage probability for data transmission is minimized and network lifetime is enhanced, while meeting the limits of total transmit power of CRs and interference threshold to PU simultaneously. A solution for the stated problem is proposed along with performance evaluation. A few related research problems are mentioned as future research directions.


Author(s):  
Piyush Kumar Shukla ◽  
Kirti Raj Bhatele

Wireless Networks are vulnerable in nature, mainly due to the behavior of node communicating through it. As a result, attacks with malicious intent have been and will be devised to exploit these vulnerabilities and to cripple MANET operation. In this chapter, we analyze the security problems in MANET. On the prevention side, various key and trust management schemes have been developed to prevent external attacks from outsiders. Both prevention and detection method will work together to address the security concern in MANET.


Author(s):  
Arundhati Arjaria

Mobile ad hoc networks are infrastructure-less wireless networks; all nodes can quickly share information without using any fixed infrastructure like base station or access point. Wireless ad hoc networks are characterized by frequent topology changes, unreliable wireless channel, network congestion, and resource contention. Multimedia applications usually are bandwidth hungry with stringent delay, jitter, and loss requirements. Designing ad hoc networks which support multimedia applications, hence, is considered a hard task. The hidden and exposed terminal problems are the main which consequently reduces the network capacity. Hidden and exposed nodes reduce the performance of the wireless ad hoc networks. Access delay is the major parameter that is to be taken under consideration. Due to hidden and exposed terminal problems, the network suffers from a serious unfairness problem.


Author(s):  
N. Chand

Mobile wireless networks allow a more flexible communication structure than traditional networks. Wireless communication enables information transfer among a network of disconnected, and often mobile, users. Popular wireless networks such as mobile phone networks and wireless local area networks (LANs), are traditionally infrastructure based—that is, base stations (BSs), access points (APs), and servers are deployed before the network can be used. A mobile ad hoc network (MANET) consists of a group of mobile hosts that may communicate with each other without fixed wireless infrastructure. In contrast to conventional cellular systems, there is no master-slave relationship between nodes, such as base station to mobile users in ad-hoc networks. Communication between nodes can be supported by direct connection or multi-hop relays. The nodes have the responsibility of self-organizing so that the network is robust to the variations in network topology due to node mobility as well as the fluctuations of the signal quality in the wireless environment. All of these guarantee anywhere and anytime communication. Recently, mobile ad-hoc networks have been receiving increasing attention in both commercial and military applications.


2018 ◽  
Vol 52 (8) ◽  
pp. 993-999 ◽  
Author(s):  
P. D. Zegzhda ◽  
D. V. Ivanov ◽  
D. A. Moskvin ◽  
G. S. Kubrin

2010 ◽  
Vol 20 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Nenad Kojic ◽  
Marija Zajeganovic-Ivancic ◽  
Irini Reljin ◽  
Branimir Reljin

Mobile ad-hoc networks (MANET) are one of wireless networks implementation. MANET is very popular technology initially based on military purposes. Specific modifications of MANET created a possibility to implement several new wireless networks. One of them is a wireless mesh network (WMN). Over the last ten years, WMNs have gained more and more attention and are now considered as a convincing solution for providing better Internet access services for end users. WMN is an emerging technology that offers a cost-effective and scalable method to connect wireless devices. The main problem in WMNs is a routing protocol, especially because it has to enable the access to network for both mesh and conventional clients. Most of the existing ad hoc routing protocols use minimum hop-count as a metric for identifying the best packet routes. This paper presents neural network based approach to routing protocol for WMN. Neural networks are capable to analyze very complex network environments and solve routing problems on optimal (or almost optimal) way.


2021 ◽  
Vol 1 (1) ◽  
pp. 21-28
Author(s):  
Adisa Hasković Džubur ◽  
Alem Čolaković ◽  
Belma Memić ◽  
Elma Avdagić-Golub

A large number of researchers found their interest in addressing the issue of capacity scaling for wireless ad hoc networks. This paper aims to provide a comprehensive overview of the development of capacity scaling laws in wireless networks, highlighting the problem of scaling as one of the basic challenges in their research. The review began with the definition of the notion of bandwidth of random networks, which were taken as a reference model of consideration when determining more advanced strategies for improving throughput capacity. Based on these strategies, other factors that have an impact on capacity scaling laws have been identified and elaborated. Finally, the capacity of hybrid wireless networks, ie networks in which at least two types of nodes functionally exist (ad hoc nodes/infrastructure nodes / auxiliary nodes), was partially investigated.


Sign in / Sign up

Export Citation Format

Share Document