EdgeCloud

Author(s):  
Jamuna S. Murthy

In the recent years, edge/fog computing is gaining greater importance and has led to the deployment of many smart devices and application frameworks which support real-time data processing. Edge computing is an extension to existing cloud computing environment and focuses on improving the reliability, scalability, and resource efficiency of cloud by abolishing the need for processing all the data at one time and thus increasing the bandwidth of a network. Edge computing can complement cloud computing in a way leading to a novel architecture which can benefit from both edge and cloud resources. This kind of resource architecture may require resource continuity provided that the selection of resources for executing a service in cloud is independent of physical location. Hence, this research work proposes a novel architecture called “EdgeCloud,” which is a distributed management system for resource continuity in edge to cloud computing environment. The performance of the system is evaluated by considering a traffic management service example mapped into the proposed layered framework.

Author(s):  
Jamuna S. Murthy

In the recent years, edge/fog computing is gaining greater importance and has led to the deployment of many smart devices and application frameworks which support real-time data processing. Edge computing is an extension to existing cloud computing environment and focuses on improving the reliability, scalability, and resource efficiency of cloud by abolishing the need for processing all the data at one time and thus increasing the bandwidth of a network. Edge computing can complement cloud computing in a way leading to a novel architecture which can benefit from both edge and cloud resources. This kind of resource architecture may require resource continuity provided that the selection of resources for executing a service in cloud is independent of physical location. Hence, this research work proposes a novel architecture called “EdgeCloud,” which is a distributed management system for resource continuity in edge to cloud computing environment. The performance of the system is evaluated by considering a traffic management service example mapped into the proposed layered framework.


Author(s):  
Akashdeep Bhardwaj

This article describes how the rise of fog computing to improve cloud computing performance and the acceptance of smart devices is slowly but surely changing our future and shaping the computing environment around us. IoT integrated with advances in low cost computing, storage and power, along with high speed networks and big data, supports distributed computing. However, much like cloud computing, which are under constant security attacks and issues, distributed computing also faces similar challenges and security threats. This can be mitigated to a great extent using fog computing, which extends the limits of Cloud services to the last mile edge near to the nodes and networks, thereby increasing the performance and security levels. Fog computing also helps increase the reach and comes across as a viable solution for distributed computing. This article presents a review of the academic literature research work on the Fog Computing. The authors discuss the challenges in Fog environment and propose a new taxonomy.


2021 ◽  
Vol 18 (22) ◽  
pp. 413
Author(s):  
Ismail Zaharaddeen Yakubu ◽  
Lele Muhammed ◽  
Zainab Aliyu Musa ◽  
Zakari Idris Matinja ◽  
Ilya Musa Adamu

Cloud high latency limitation has necessitated the introduction of Fog computing paradigm that extends computing infrastructures in the cloud data centers to the edge network. Extended cloud resources provide processing, storage and network services to time sensitive request associated to the Internet of Things (IoT) services in network edge. The rapid increase in adoption of IoT devices, variations in user requirements, limited processing and storage capacity of fog resources and problem of fog resources over saturation has made provisioning and allotment of computing resources in fog environment a formidable task. Satisfying application and request deadline is the most substantial challenge compared to other dynamic variations in parameters of client requirements. To curtail these issues, the integrated fog-cloud computing environment and efficient resource selection method is highly required. This paper proposed an agent based dynamic resource allocation that employs the use of host agent to analyze the QoSrequirements of application and request and select a suitable execution layer. The host agent forwards the application request to a layer agent which is responsible for the allocation of best resource that satisfies the requirement of the application request. Host agent and layers agents maintains resource information tables for matching of task and computing resources. CloudSim toolkit functionalities were extended to simulate a realistic fog environment where the proposed method is evaluated. The experimental results proved that the proposed method performs better in terms of processing time, latency and percentage QoS delivery. HIGHLIGHTS The distance between the cloud infrastructure and the edge IoT devices makes the cloud not too competent for some IoT applications, especially the sensitive ones To minimize the latency in the cloud and ensure prompt response to user requests, Fog computing, which extends the cloud services to edge network was introduced The proliferation in adoption of IoT devices and fog resource limitations has made resource scheduling in fog computing a tedious one GRAPHICAL ABSTRACT


2018 ◽  
Vol 1 (1) ◽  
pp. 35-49 ◽  
Author(s):  
Akashdeep Bhardwaj

This article describes how the rise of fog computing to improve cloud computing performance and the acceptance of smart devices is slowly but surely changing our future and shaping the computing environment around us. IoT integrated with advances in low cost computing, storage and power, along with high speed networks and big data, supports distributed computing. However, much like cloud computing, which are under constant security attacks and issues, distributed computing also faces similar challenges and security threats. This can be mitigated to a great extent using fog computing, which extends the limits of Cloud services to the last mile edge near to the nodes and networks, thereby increasing the performance and security levels. Fog computing also helps increase the reach and comes across as a viable solution for distributed computing. This article presents a review of the academic literature research work on the Fog Computing. The authors discuss the challenges in Fog environment and propose a new taxonomy.


2020 ◽  
Vol 8 (5) ◽  
pp. 1732-1736

In today’s world, cloud computing is the most exciting and advanced technology. It came into existence with lots of advantages, but cloud-only computing has some disadvantages also like latency in real-time data processing, network congestion, less bandwidth utilization, fault tolerance, and security issues in public cloud. To address the issue of real-time data-processing and security in public cloud new computing model are used which is known as Fog Computing. It is nearer to the client or edge so that it can reduce the latency in real time data-processing and security in public cloud using techniques like user profiling and decoying technique. Fog Computing help us to overcome the latency and security issues of cloud computing. It reduces cloud latency in real time data-processing because fog computing model is nearer to the edge devices. It also improves cloud security in the public cloud.


2019 ◽  
Vol 12 (2) ◽  
pp. 34-38 ◽  
Author(s):  
Inés Sittón-Candanedo ◽  
Juan Manuel Corchado

Edge Computing (EC) is an emerging technology that has made it possible to process the large volume of data generated by devices connected to the Internet, through the Internet of objects (IO). The article provides an introduction to EC and its definition. The integration of EC in those contexts would imply an optimisation of the processes that are normally executed in a cloud computing environment, bringing considerable advantages. The main contribution of EC is a better pre-processing of the data collected through devices before they are sent to a central server or the cloud.


Sign in / Sign up

Export Citation Format

Share Document