Security Framework for Smart Visual Sensor Networks

Author(s):  
G. Suseela ◽  
Y. Asnath Victy Phamila

Due to the significance of image data over the scalar data, the camera-integrated wireless sensor networks have attained the focus of researchers in the field of smart visual sensor networks. These networks are inexpensive and found wide application in surveillance and monitoring systems. The challenge is that these systems are resource deprived systems. The visual sensor node is typically an embedded system made up of a light weight processor, low memory, low bandwidth transceiver, and low-cost image sensor unit. As these networks carry sensitive information of the surveillance region, security and privacy protection are critical needs of the VSN. Due to resource limited nature of the VSN, the image encryption is crooked into an optimally lower issue, and many findings of image security in VSN are based on selective or partial encryption systems. The secure transmission of images is more trivial. Thus, in this chapter, a security frame work of smart visual sensor network built using energy-efficient image encryption and coding systems designed for VSN is presented.

Author(s):  
G. Suseela ◽  
Y. Asnath Victy Phamila

Due to the significance of image data over the scalar data, the camera-integrated wireless sensor networks have attained the focus of researchers in the field of smart visual sensor networks. These networks are inexpensive and found wide application in surveillance and monitoring systems. The challenge is that these systems are resource deprived systems. The visual sensor node is typically an embedded system made up of a light weight processor, low memory, low bandwidth transceiver, and low-cost image sensor unit. As these networks carry sensitive information of the surveillance region, security and privacy protection are critical needs of the VSN. Due to resource limited nature of the VSN, the image encryption is crooked into an optimally lower issue, and many findings of image security in VSN are based on selective or partial encryption systems. The secure transmission of images is more trivial. Thus, in this chapter, a security frame work of smart visual sensor network built using energy-efficient image encryption and coding systems designed for VSN is presented.


Author(s):  
G. Suseela ◽  
Y. Asnath Victy Phamila

Due to the significance of image data over the scalar data, the camera-integrated wireless sensor networks have attained the focus of researchers in the field of smart visual sensor networks. These networks are inexpensive and found wide application in surveillance and monitoring systems. The challenge is that these systems are resource deprived systems. The visual sensor node is typically an embedded system made up of a light weight processor, low memory, low bandwidth transceiver, and low-cost image sensor unit. As these networks carry sensitive information of the surveillance region, security and privacy protection are critical needs of the VSN. Due to resource limited nature of the VSN, the image encryption is crooked into an optimally lower issue, and many findings of image security in VSN are based on selective or partial encryption systems. The secure transmission of images is more trivial. Thus, in this chapter, a security frame work of smart visual sensor network built using energy-efficient image encryption and coding systems designed for VSN is presented.


Author(s):  
Julien Sebastien Jainsky ◽  
Deepa Kundur

In this chapter, we discuss the topic of security in wireless visual sensor networks. In particular, attention is brought to steganographic security and how it can be discouraged without challenging the primary objectives of the network. We motivate the development and implementation of more lightweight steganalytic solutions that take into account the resources made available by the network’s deployment and its application in order to minimize the steganalysis impact on the WVSN workload. The concept of preventative steganalysis is also introduced in this chapter as a means to protect the network from the moment it is deployed. Preventative steganalysis aims at discouraging any potential steganographic attacks by processing the WVSN collected data such that the possibility of steganography becomes very small and the steganalysis leads to high rate of success.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3629
Author(s):  
Jennifer Simonjan ◽  
Sebastian Taurer ◽  
Bernhard Dieber

Today, visual sensor networks (VSNs) are pervasively used in smart environments such as intelligent homes, industrial automation or surveillance. A major concern in the use of sensor networks in general is their reliability in the presence of security threats and cyberattacks. Compared to traditional networks, sensor networks typically face numerous additional vulnerabilities due to the dynamic and distributed network topology, the resource constrained nodes, the potentially large network scale and the lack of global network knowledge. These vulnerabilities allow attackers to launch more severe and complicated attacks. Since the state-of-the-art is lacking studies on vulnerabilities in VSNs, a thorough investigation of attacks that can be launched against VSNs is required. This paper presents a general threat model for the attack surfaces of visual sensor network applications and their components. The outlined threats are classified by the STRIDE taxonomy and their weaknesses are classified using CWE, a common taxonomy for security weaknesses.


Wireless Visual Sensor Networks (WVSNs) are a branch of Wireless Sensor Networks (WSNs), WVSN nodes vary from standard WSN nodes in the ability of sensing the environment in two dimensions rather than in one. Therefore, it follows the three main fundamentals of WSNs: wireless networking, distributed sensing and low power hardware. This paper discusses different challenges that face the design of WVSNs like deployment of nodes, field of view overlapping, image analysis, area coverage and energy consumption. Efforts have been done mainly to survey the problem of energy consumption that can affect the lifetime of visual sensor network and overview the different techniques that have been used by many researchers to handle this crucial issue.


Sign in / Sign up

Export Citation Format

Share Document