scholarly journals Study of Energy Management in Wireless Visual Sensor Networks

Wireless Visual Sensor Networks (WVSNs) are a branch of Wireless Sensor Networks (WSNs), WVSN nodes vary from standard WSN nodes in the ability of sensing the environment in two dimensions rather than in one. Therefore, it follows the three main fundamentals of WSNs: wireless networking, distributed sensing and low power hardware. This paper discusses different challenges that face the design of WVSNs like deployment of nodes, field of view overlapping, image analysis, area coverage and energy consumption. Efforts have been done mainly to survey the problem of energy consumption that can affect the lifetime of visual sensor network and overview the different techniques that have been used by many researchers to handle this crucial issue.

Author(s):  
Julien Sebastien Jainsky ◽  
Deepa Kundur

In this chapter, we discuss the topic of security in wireless visual sensor networks. In particular, attention is brought to steganographic security and how it can be discouraged without challenging the primary objectives of the network. We motivate the development and implementation of more lightweight steganalytic solutions that take into account the resources made available by the network’s deployment and its application in order to minimize the steganalysis impact on the WVSN workload. The concept of preventative steganalysis is also introduced in this chapter as a means to protect the network from the moment it is deployed. Preventative steganalysis aims at discouraging any potential steganographic attacks by processing the WVSN collected data such that the possibility of steganography becomes very small and the steganalysis leads to high rate of success.


Author(s):  
Afaf Mosaif, Et. al.

In recent years, wireless sensor networks have been used in a wide range of applications such as smart cities, military, and environmental monitoring. Target tracking is one of the most interesting applications in this area of research, which mainly consists of detecting the targets that move in the area of interest and monitoring their motions. However, tracking a target using visual sensors is different and more difficult than that of scalar sensors due to the special characteristics of visual sensors, such as their directional limited field of view, and the nature and amount of the sensed data. In this paper, we first present the challenges of detection and target tracking in wireless visual sensor networks, then we propose a scheme that describes the basic steps of target tracking in these networks, we focus then on the tracking across camera nodes by presenting some metrics that can be considered when designing and evaluating this type of tracking approaches.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qian Shen ◽  
Tao Jiang ◽  
Yongjun Zhu ◽  
Yin Wu

With the continuous improvement of encryption algorithms, some applications based on the architecture of wireless visual sensor networks have gradually shifted their attention to the imperceptibility and antijamming performance of secret images. To reduce the probability of secret images being detected, the current research focuses on hiding secret data in the least-significant bit of the cover image in the spatial domain or embedding data into the coefficients of the high-frequency band in the transformational domain, which usually leads to poor performance in a hostile environment. Therefore, some researchers proposed to substitute the coefficients of the medium-frequency band in the transformational domain with secret information to enhance the anti-interference performance. However, this idea would severely affect the imperceptibility of secret images. As a result, an improved version based on the partial preservation embedding algorithm was designed in this paper. Theory analysis and simulation results indicate that the proposed scheme performs better than the existing methods by directly substituting the coefficients of the medium-frequency band in the transformational domain, especially in the case of strong noise interference.


Author(s):  
G. Suseela ◽  
Y. Asnath Victy Phamila

Due to the significance of image data over the scalar data, the camera-integrated wireless sensor networks have attained the focus of researchers in the field of smart visual sensor networks. These networks are inexpensive and found wide application in surveillance and monitoring systems. The challenge is that these systems are resource deprived systems. The visual sensor node is typically an embedded system made up of a light weight processor, low memory, low bandwidth transceiver, and low-cost image sensor unit. As these networks carry sensitive information of the surveillance region, security and privacy protection are critical needs of the VSN. Due to resource limited nature of the VSN, the image encryption is crooked into an optimally lower issue, and many findings of image security in VSN are based on selective or partial encryption systems. The secure transmission of images is more trivial. Thus, in this chapter, a security frame work of smart visual sensor network built using energy-efficient image encryption and coding systems designed for VSN is presented.


2020 ◽  
Vol 20 (2) ◽  
pp. 778-785
Author(s):  
Mohammadjavad Mirzazadeh Moallem ◽  
Ali Aghagolzadeh ◽  
Reza Ghazalian

Sign in / Sign up

Export Citation Format

Share Document