Blockchain for Industrial Internet of Things (IIoT)

Author(s):  
Rinki Sharma

Over the years, the industrial and manufacturing applications have become highly connected and automated. The incorporation of interconnected smart sensors, actuators, instruments, and other devices helps in establishing higher reliability and efficiency in the industrial and manufacturing process. This has given rise to the industrial internet of things (IIoT). Since IIoT components are scattered all over the network, real-time authenticity of the IIoT activities becomes essential. Blockchain technology is being considered by the researchers as the decentralized architecture to securely process the IIoT transactions. However, there are challenges involved in effective implementation of blockchain in IIoT. This chapter presents the importance of blockchain in IIoT paradigm, its role in different IIoT applications, challenges involved, possible solutions to overcome the challenges and open research issues.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3715
Author(s):  
Ioan Ungurean ◽  
Nicoleta Cristina Gaitan

In the design and development process of fog computing solutions for the Industrial Internet of Things (IIoT), we need to take into consideration the characteristics of the industrial environment that must be met. These include low latency, predictability, response time, and operating with hard real-time compiling. A starting point may be the reference fog architecture released by the OpenFog Consortium (now part of the Industrial Internet Consortium), but it has a high abstraction level and does not define how to integrate the fieldbuses and devices into the fog system. Therefore, the biggest challenges in the design and implementation of fog solutions for IIoT is the diversity of fieldbuses and devices used in the industrial field and ensuring compliance with all constraints in terms of real-time compiling, low latency, and predictability. Thus, this paper proposes a solution for a fog node that addresses these issues and integrates industrial fieldbuses. For practical implementation, there are specialized systems on chips (SoCs) that provides support for real-time communication with the fieldbuses through specialized coprocessors and peripherals. In this paper, we describe the implementation of the fog node on a system based on Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 SoC.


Author(s):  
А.И. Сухотерин

В статье рассматривается проблемы управления ИБ на территориально-распределённых объектах защиты. Во избежание простоев и для сохранения безопасности на предприятии необходимо внедрение технологий, позволяющих обнаруживать и прогнозировать риски. Предлагается с помощью промышленного интернета-вещей обеспечить непрерывный интеллектуальный мониторинг ключевых показателей, что дает возможность определить проблему и принять необходимые меры для ее решения. Оперативный в режиме реального времени анализ поможет специалисту ИБ быстрее находить уязвимые места и предотвратить несанкционированные действия на предприятии. This article discusses the problems of is management on geographically distributed security objects. In order to avoid downtime and to maintain security at the enterprise, it is necessary to introduce technologies that allow detecting and predicting risks. It is proposed to use the industrial Internet of things to provide continuous intellectual monitoring of key indicators, which makes it possible to identify the problem and take the necessary measures to solve it. Real-time real-time analysis will help the IB specialist find vulnerabilities faster and prevent unauthorized actions in the enterprise .


2018 ◽  
Vol 188 ◽  
pp. 05006
Author(s):  
Christos Anagnostopoulos ◽  
Christos Alexakos ◽  
Apostolos Fournaris ◽  
Christos Koulamas ◽  
Athanasios Kalogeras

The manufacturing environment is characterized by increased complexity with different devices, systems and applications that need to interoperate, while residing at different layers of the classical industrial environment hierarchy. The introduction of the Industrial Internet of Things with increasingly smarter devices drives towards flatter hierarchies. This paper deals with an architecture for integration of IIoT devices in the manufacturing environment utilizing a Multi Agent System to this end. This extended architecture is utilised so as to perform failure detection of both IIoT devices and manufacturing resources, and react by altering the manufacturing process either automatically or semi-automatically.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jianwen Hu ◽  
Yuling Chen ◽  
Xiaojun Ren ◽  
Yixian Yang ◽  
Xiaobin Qian ◽  
...  

As the technical support of the industrial Internet of Things, blockchain technology has been widely used in energy trading, data transactions, and Internet of Vehicles. However, most of the existing energy trading models only address the transaction security and transaction privacy issues that arise in the energy trading process, ignoring the fairness of resource allocation and transaction equity in the trading process. In order to tackle those problems, an energy trading scheme called HO-TRAD is proposed in this paper to improve the efficiency of model trading while ensuring the fairness of energy trading. We propose a new trading strategy in the HO-TRAD energy trading scheme that guarantees fairness in the allocation of trading resources by introducing an entity’s active reputation value. Use smart contracts to achieve transparency and ensure fairness in the transaction process. Based on the identity verification foundation of the consortium chain, the scheme enhances the existing PBFT consensus algorithm and improves the efficiency of model transactions. The experimental simulation indicates that the scheme requires less transaction time and has higher transaction fairness and security.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8363
Author(s):  
Muhammad Zubair Islam ◽  
Shahzad ◽  
Rashid Ali ◽  
Amir Haider ◽  
Hyungseok Kim

With the inclusion of tactile Internet (TI) in the industrial sector, we are at the doorstep of the tactile Industrial Internet of Things (IIoT). This provides the ability for the human operator to control and manipulate remote industrial environments in real-time. The TI use cases in IIoT demand a communication network, including ultra-low latency, ultra-high reliability, availability, and security. Additionally, the lack of the tactile IIoT testbed has made it more severe to investigate and improve the quality of services (QoS) for tactile IIoT applications. In this work, we propose a virtual testbed called IoTactileSim, that offers implementation, investigation, and management for QoS provisioning in tactile IIoT services. IoTactileSim utilizes a network emulator Mininet and robotic simulator CoppeliaSim to perform real-time haptic teleoperations in virtual and physical environments. It provides the real-time monitoring of the implemented technology parametric values, network impairments (delay, packet loss), and data flow between operator (master domain) and teleoperator (slave domain). Finally, we investigate the results of two tactile IIoT environments to prove the potential of the proposed IoTactileSim testbed.


Sign in / Sign up

Export Citation Format

Share Document