Automatic Keyword Extraction From Text Documents

Author(s):  
Furkan Goz ◽  
Alev Mutlu

Keyword indexing is the problem of assigning keywords to text documents. It is an important task as keywords play crucial roles in several information retrieval tasks. The problem is also challenging as the number of text documents is increasing, and such documents come in different forms (i.e., scientific papers, online news articles, and microblog posts). This chapter provides an overview of keyword indexing and elaborates on keyword extraction techniques. The authors provide the general motivations behind the supervised and the unsupervised keyword extraction and enumerate several pioneering and state-of-the-art techniques. Feature engineering, evaluation metrics, and benchmark datasets used to evaluate the performance of keyword extraction systems are also discussed.

2018 ◽  
Author(s):  
Debanjan Mahata ◽  
John Kuriakose ◽  
Rajiv Ratn Shah ◽  
Roger Zimmermann ◽  
John R. Talburt

Keyword extraction is a fundamental task in naturallanguage processing that facilitates mapping of documents to a concise set of representative single and multi-word phrases. Keywords from text documents are primarily extracted using supervised and unsupervised approaches. In this paper, we present an unsupervised technique that uses a combination of theme-weighted personalized PageRank algorithm and neural phrase embeddings for extracting and ranking keywords. Wealso introduce an efficient way of processing text documents and training phrase embeddings using existing techniques. We share an evaluation dataset derived from an existing dataset that is used for choosing the underlying embedding model. The evaluations for ranked keyword extraction are performed on two benchmark datasets comprising of short abstracts (Inspec), and long scientific papers (SemEval 2010), and is shown to produce results better than the state-of-the-art systems.


2018 ◽  
Author(s):  
Debanjan Mahata ◽  
John Kuriakose ◽  
Rajiv Ratn Shah ◽  
Roger Zimmermann

Keyphrase extraction is a fundamental task in natural language processing that facilitates mapping of documents to a set of representative phrases. In this paper, we present an unsupervised technique (Key2Vec) that leverages phrase embeddings for ranking keyphrases extracted from scientific articles. Specifically, we propose an effective way of processing text documents for training multi-word phrase embeddings that are used for thematic representation of scientific articles and ranking of keyphrases extracted from them using theme-weighted PageRank. Evaluations are performed on benchmark datasets producing state-of-the-art results.


2021 ◽  
Vol 37 (4) ◽  
pp. 511-527
Author(s):  
Pham Hoang Anh ◽  
Ngo Xuan Bach ◽  
Tu Minh Phuong

When long-term user proles are not available, session-based recommendation methods are used to predict the user's next actions from anonymous sessions-based data. Recent advances in session-based recommendation highlight the necessity of modeling not only user sequential behaviors but also the user's main interest in a session, while avoiding the eect of unintended clicks causing interest drift of the user. In this work, we propose a Dual Transformer Encoder Recommendation model (DTER) as a solution to address this requirement. The idea is to combine the following recipes: (1) a Transformer-based model with dual encoders capable of modeling both sequential patterns and the main interest of the user in a session; (2) a new recommendation model that is designed for learning richer session contexts by conditioning on all permutations of the session prex. This approach provides a unied framework for leveraging the ability of the Transformer's self-attention mechanism in modeling session sequences while taking into account the user's main interest in the session. We empirically evaluate the proposed method on two benchmark datasets. The results show that DTER outperforms state-of-the-art session-based recommendation methods on common evaluation metrics.


Author(s):  
Junaid Rashid ◽  
Syed Muhammad Adnan Shah ◽  
Aun Irtaza

Topic modeling is an effective text mining and information retrieval approach to organizing knowledge with various contents under a specific topic. Text documents in form of news articles are increasing very fast on the web. Analysis of these documents is very important in the fields of text mining and information retrieval. Meaningful information extraction from these documents is a challenging task. One approach for discovering the theme from text documents is topic modeling but this approach still needs a new perspective to improve its performance. In topic modeling, documents have topics and topics are the collection of words. In this paper, we propose a new k-means topic modeling (KTM) approach by using the k-means clustering algorithm. KTM discovers better semantic topics from a collection of documents. Experiments on two real-world Reuters 21578 and BBC News datasets show that KTM performance is better than state-of-the-art topic models like LDA (Latent Dirichlet Allocation) and LSA (Latent Semantic Analysis). The KTM is also applicable for classification and clustering tasks in text mining and achieves higher performance with a comparison of its competitors LDA and LSA.


Author(s):  
Zhiwen Tang ◽  
Grace Hui Yang

Most neural Information Retrieval (Neu-IR) models derive query-to-document ranking scores based on term-level matching. Inspired by TileBars, a classical term distribution visualization method, in this paper, we propose a novel Neu-IR model that handles query-to-document matching at the subtopic and higher levels. Our system first splits the documents into topical segments, “visualizes” the matchings between the query and the segments, and then feeds an interaction matrix into a Neu-IR model, DeepTileBars, to obtain the final ranking scores. DeepTileBars models the relevance signals occurring at different granularities in a document’s topic hierarchy. It better captures the discourse structure of a document and thus the matching patterns. Although its design and implementation are light-weight, DeepTileBars outperforms other state-of-the-art Neu-IR models on benchmark datasets including the Text REtrieval Conference (TREC) 2010-2012 Web Tracks and LETOR 4.0.


Author(s):  
Tianyu Liu ◽  
Wei Wei ◽  
Xiaojun Wan

With the purpose of attracting clicks, online news publishers and editors use diverse strategies to make their headlines catchy, with a sacrifice of accuracy. Specifically, a considerable portion of news headlines is ambiguous. Such headlines are unclear relative to the content of the story, and largely degrade the reading experience of the audience. In this paper, we focus on dealing with the information gap caused by the ambiguous news headlines. We define a new task of explaining ambiguous headlines with short informative texts, and build a benchmark dataset for evaluation. We address the task by selecting a proper sentence from the news body to resolve the ambiguity in an ambiguous headline. Both feature engineering methods and neural network methods are explored. For feature engineering, we improve a standard SVM classifier with elaborately designed features. For neural networks, we propose an ambiguity-aware neural matching model based on a previous model. Utilizing automatic and manual evaluation metrics, we demonstrate the efficacy and the complementarity of the two methods, and the ambiguity-aware neural matching model achieves the state-of-the-art performance on this challenging task.


Author(s):  
Lin Zhu ◽  
Yihong Chen ◽  
Bowen He

As one of the most popular techniques for solving the ranking problem in information retrieval, Learning-to-rank (LETOR) has received a lot of attention both in academia and industry due to its importance in a wide variety of data mining applications. However, most of existing LETOR approaches choose to learn a single global ranking function to handle all queries, and ignore the substantial differences that exist between queries. In this paper, we propose a domain generalization strategy to tackle this problem. We propose QueryInvariant Listwise Context Modeling (QILCM), a novel neural architecture which eliminates the detrimental influence of inter-query variability by learning query-invariant latent representations, such that the ranking system could generalize better to unseen queries. We evaluate our techniques on benchmark datasets, demonstrating that QILCM outperforms previous state-of-the-art approaches by a substantial margin.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Min-Ling Zhang ◽  
Jun-Peng Fang ◽  
Yi-Bo Wang

In multi-label classification, the task is to induce predictive models which can assign a set of relevant labels for the unseen instance. The strategy of label-specific features has been widely employed in learning from multi-label examples, where the classification model for predicting the relevancy of each class label is induced based on its tailored features rather than the original features. Existing approaches work by generating a group of tailored features for each class label independently, where label correlations are not fully considered in the label-specific features generation process. In this article, we extend existing strategy by proposing a simple yet effective approach based on BiLabel-specific features. Specifically, a group of tailored features is generated for a pair of class labels with heuristic prototype selection and embedding. Thereafter, predictions of classifiers induced by BiLabel-specific features are ensembled to determine the relevancy of each class label for unseen instance. To thoroughly evaluate the BiLabel-specific features strategy, extensive experiments are conducted over a total of 35 benchmark datasets. Comparative studies against state-of-the-art label-specific features techniques clearly validate the superiority of utilizing BiLabel-specific features to yield stronger generalization performance for multi-label classification.


2019 ◽  
Vol 53 (2) ◽  
pp. 3-10
Author(s):  
Muthu Kumar Chandrasekaran ◽  
Philipp Mayr

The 4 th joint BIRNDL workshop was held at the 42nd ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2019) in Paris, France. BIRNDL 2019 intended to stimulate IR researchers and digital library professionals to elaborate on new approaches in natural language processing, information retrieval, scientometrics, and recommendation techniques that can advance the state-of-the-art in scholarly document understanding, analysis, and retrieval at scale. The workshop incorporated different paper sessions and the 5 th edition of the CL-SciSumm Shared Task.


2021 ◽  
Vol 11 (4) ◽  
pp. 1728
Author(s):  
Hua Zhong ◽  
Li Xu

The prediction interval (PI) is an important research topic in reliability analyses and decision support systems. Data size and computation costs are two of the issues which may hamper the construction of PIs. This paper proposes an all-batch (AB) loss function for constructing high quality PIs. Taking the full advantage of the likelihood principle, the proposed loss makes it possible to train PI generation models using the gradient descent (GD) method for both small and large batches of samples. With the structure of dual feedforward neural networks (FNNs), a high-quality PI generation framework is introduced, which can be adapted to a variety of problems including regression analysis. Numerical experiments were conducted on the benchmark datasets; the results show that higher-quality PIs were achieved using the proposed scheme. Its reliability and stability were also verified in comparison with various state-of-the-art PI construction methods.


Sign in / Sign up

Export Citation Format

Share Document