Challenges in Energy-Efficient Communications as Enablers for Green Solutions on the 5G Heterogeneous Networks

Author(s):  
Irma Uriarte-Ramírez ◽  
Norma A. Barboza-Tello ◽  
Paul Medina-Castro

One of the most representative challenges of multi-tier heterogeneous network architectures is the interference management among different Radio Access Technologies. In this sense, in order to achieve the potential increase on network capacity forecasted for 5G, the issue of interference must be addressed. Intelligent energy management, as proposed in the growing area of Green Communications could serve as an appealing solution to the interference issue. However developing an optimal energy management plan requires the understanding of the characteristics of 5G cellular networks that could be exploited to improve energy and resources efficiency. In this work we present a study about challenges in energy-efficient communications and technologies as enablers for green solutions and how this challenges can be extended to meet those of the 5G heterogeneous networks, in order to identify possible solutions to address the energy efficiency and interference mitigation issues.

Author(s):  
Irma Uriarte-Ramírez ◽  
Norma A. Barboza-Tello ◽  
Paul Medina-Castro

One of the most representative challenges of multi-tier heterogeneous network architectures is the interference management among different Radio Access Technologies. In this sense, in order to achieve the potential increase on network capacity forecasted for 5G, the issue of interference must be addressed. Intelligent energy management, as proposed in the growing area of Green Communications could serve as an appealing solution to the interference issue. However developing an optimal energy management plan requires the understanding of the characteristics of 5G cellular networks that could be exploited to improve energy and resources efficiency. In this work we present a study about challenges in energy-efficient communications and technologies as enablers for green solutions and how this challenges can be extended to meet those of the 5G heterogeneous networks, in order to identify possible solutions to address the energy efficiency and interference mitigation issues.


Author(s):  
Chungang Yang ◽  
Jiandong Li

In Long Term Evolution (LTE) 4G systems, coexistence of multiple in-band smallcells defines what is called heterogeneous cellular networks. There is no doubt that the development of heterogeneous networks and the popularization of intelligent terminals facilitate subscribers with great convenience, better Quality of Experience (QoE) guarantee, and much higher traffic rate. However, interference management will be indispensable in heterogeneous networks. Meanwhile, with emerging various energy-hungry services of subscribers, energy-aware design attracts a wide attention. Motivated by interference mitigation and energy-saving challenges of the heterogeneous networks and the promising cognitive radio techniques, more advanced energy-saving and interference control techniques based on cognitive radio should be developed for better QoE. In this chapter, the authors first review cognitive radios, multiple types of smallcells, and introduce the benefits of cognitive radio-enabled heterogeneous networks. Then, focusing on the scheme design of cognitive interference management and energy management, finally, simulation results are provided to show the improved performance of these proposed cognitive schemes.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Onur Sahin ◽  
Jialing Li ◽  
Enoch Lu ◽  
Yingxue Li ◽  
Philip J. Pietraski

We present a practical interference management scheme for heterogeneous networks (HetNets). The underlying ideas are based on (i) Han-Kobayashi-type message splitting (MS) where the receivers decode and cancel “part” of the interference which is accordingly optimized by the transmitters to ensure decoding and (ii) opportunistic interference cancellation (OIC) where the interfering transmitters act independently of the receivers that employ interference cancellation. We develop a novel transmission and reception scheme, called joint MS and OIC (MS-OIC), that engages both MS and OIC to account for a practical HetNet system with multiple macrocells and femtocells. The MS component includes a precoder design that judiciously maximizes the weighted sum throughput via the enabling of interference cancellation. A system design along with a novel scheduler that facilitates MS-OIC in a general HetNet system is also developed. System level simulations for a general HetNet system are presented, and the proposed MS-OIC scheme is compared with benchmark schemes such as Coordinated Beamforming (CBF) and joint CBF and Almost Blank Subframes (CBF-ABS). It is observed that the proposed MS-OIC scheme improves the macrocell throughput substantially, balances the achievable rates between the macrocell and femtocell users, and provides significant outage performance improvement in the system.


2018 ◽  
Vol 25 (4) ◽  
pp. 25-31 ◽  
Author(s):  
Yu Qiu ◽  
Haijun Zhang ◽  
Keping Long ◽  
Yao Huang ◽  
Xiaoshi Song ◽  
...  

2020 ◽  
Vol E103.B (1) ◽  
pp. 71-78
Author(s):  
Tung Thanh VU ◽  
Duy Trong NGO ◽  
Minh N. DAO ◽  
Quang-Thang DUONG ◽  
Minoru OKADA ◽  
...  

Author(s):  
Rajkarn Singh ◽  
Cengis Hasan ◽  
Xenofon Foukas ◽  
Marco Fiore ◽  
Mahesh K. Marina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document