U.S. Unemployment Rate Prediction by Economic Indices in the COVID-19 Pandemic Using Neural Network, Random Forest, and Generalized Linear Regression

2022 ◽  
pp. 263-284
Author(s):  
Zichen Zhao ◽  
Guanzhou Hou

Artificial neural network (ANN) has been showing its superior capability of modeling and prediction. Neural network model is capable of incorporating high dimensional data, and the model is significantly complex statistically. Sometimes, the complexity is treated as a Blackbox. However, due to the model complexity, the model is capable of capture and modeling an extensive number of patterns, and the prediction power is much stronger than traditional statistical models. Random forest algorithm is a combination of classification and regression trees, using bootstrap to randomly train the model from a set of data (called training set) and test the prediction by a testing set. Random forest has high prediction speed, moderate variance, and does not require any rescaling or transformation of the dataset. This study validates the relationship between the U.S. unemployment rate and economic indices during the COVID-19 pandemic and constructs three different predictive modeling for unemployment rate by economic indices through neural network, random forest, and generalized linear regression model.

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2021 ◽  
Vol 16 ◽  
pp. 155892502110548
Author(s):  
Hongxin Zhu ◽  
Kun Zou ◽  
Wenlan Bao

In recent years, a large number of automatic equipment has been introduced into the chemical fiber filament doffing production line, but the related research on the fully automatic production line technology is not yet mature. At present, it is difficult to collect data due to test costs and confidentiality. This paper proposes to develop a simulation platform for a chemical fiber filament doffing production line, which enables us to effectively obtain data and quantitatively study the relationship between the number of manual interventions and other process parameters of the production line. Considering that the parameter research is a multi-factor problem, an orthogonal test was designed by using SPSS software and was carried out by using a simulation platform. The multiple linear regression (MLR) and the neural network optimized by genetic algorithm were adopted to fit the relationship between the number of manual interventions and other parameters of the production line. The SPSS software was applied to obtain the standardized coefficients of the multiple linear regression fitting and the neural network mean impact value (MIV) algorithm was applied to obtain the magnitude and direction of the impact of different parameters on the number of manual interventions. The above results provide important reference for the design of similar new production lines and for the improvement of old production lines.


Author(s):  
Mohammad S. Khrisat ◽  
Ziad A. Alqadi

<span>Multiple linear regressions are an important tool used to find the relationship between a set of variables used in various scientific experiments. In this article we are going to introduce a simple method of solving a multiple rectilinear regressions (MLR) problem that uses an artificial neural network to find the accurate and expected output from MLR problem. Different artificial neural network (ANN) types with different architecture will be tested, the error between the target outputs and the calculated ANN outputs will be investigated. A recommendation of using a certain type of ANN based on the experimental results will be raised.</span>


Author(s):  
Jatinder Kumar ◽  
Ajay Bansal

The experimental determination of various properties of diesel-biodiesel mixtures is very time consuming as well as tedious process. Any tool helpful in estimation of these properties without experimentation can be of immense utility. In present work, other tools of determination of properties of diesel-biodiesel blends were tried. A traditional statistical technique of linear regression (principle of least squares) was used to estimate the flash point, fire point, density and viscosity of diesel and biodiesel mixtures. A set of seven neural network architectures, three training algorithms along with ten different sets of weight and biases were examined to choose best Artificial Neural Network (ANN) to predict the above-mentioned properties of dieselbiodiesel mixtures. The performance of both of the traditional linear regression and ANN techniques were then compared to check their validity to predict the properties of various mixtures of diesel and biodiesel. Key words: Biodiesel; Artificial Neural Network; Principle of least squares; Diesel; Linear Regression. DOI: 10.3126/kuset.v6i2.4017Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.98-103


2014 ◽  
Vol 69 (3) ◽  
Author(s):  
Zulkarnain Hassan ◽  
Supiah Shamsudin ◽  
Sobri Harun

This paper presents the study of possible input variances for modeling the long-term runoff series using artificial neural network (ANN). ANN has the ability to derive the relationship between the inputs and outputs of a process without the physics being provided to it, and it is believed to be more flexible to be used compared to the conceptual models [1]. Data series from the Kurau River sub-catchment was applied to build the ANN networks and the model was calibrated using the input of rainfall, antecedent rainfall, temperature, antecedent temperature and antecedent runoff. In addition, the results were compared with the conceptual model, named IHACRES. The study reveal that ANN and IHACRES can simulate well for mean runoff but ANN gives a remarkable performance compared to IHACRES, if the model customizes with a good configuration.  


2010 ◽  
Vol 17 (1) ◽  
pp. 65-76 ◽  
Author(s):  
U. K. Singh ◽  
R. K. Tiwari ◽  
S. B. Singh

Abstract. The backpropagation (BP) artificial neural network (ANN) technique of optimization based on steepest descent algorithm is known to be inept for its poor performance and does not ensure global convergence. Nonlinear and complex DC resistivity data require efficient ANN model and more intensive optimization procedures for better results and interpretations. Improvements in the computational ANN modeling process are described with the goals of enhancing the optimization process and reducing ANN model complexity. Well-established optimization methods, such as Radial basis algorithm (RBA) and Levenberg-Marquardt algorithms (LMA) have frequently been used to deal with complexity and nonlinearity in such complex geophysical records. We examined here the efficiency of trained LMA and RB networks by using 2-D synthetic resistivity data and then finally applied to the actual field vertical electrical resistivity sounding (VES) data collected from the Puga Valley, Jammu and Kashmir, India. The resulting ANN reconstruction resistivity results are compared with the result of existing inversion approaches, which are in good agreement. The depths and resistivity structures obtained by the ANN methods also correlate well with the known drilling results and geologic boundaries. The application of the above ANN algorithms proves to be robust and could be used for fast estimation of resistive structures for other complex earth model also.


2015 ◽  
Vol 76 (7) ◽  
Author(s):  
Mohamad Hafis Izran Ishak ◽  
Mazleenda Mazni ◽  
Amirah 'Aisha Badrul Hisham

The existence of the new improvement system for Human Machine System (HMS) is called as Human Adaptive Mechatronic (HAM) system. The main difference between these two systems is the relationship between human and machine in the system. HMS is one way relationship between human and machine while HAM is a two way relationship between human and machine. In HAM, not only human need to adapt the characteristics of machine but the machine also has to learn on human characteristics. As a part of mechatronics system, HAM has an ability to adapt with human skill to improve the performance of machine. Driving a car is one of the examples of application where HAM can be applied. One of the important elements in HAM is the quantification of human skill. Therefore, this project proposed a method to quantify the driving skill by using Artificial Neural Network (ANN) system. Feedforward neural network is used to create a multilayer neural network and five models of network were designed and tested using MATLAB Simulink software. Then, the best model from five models is chosen and compared with other method of quantification skill for verification. Based on results, the critical stage in designing the network of the system is to set the number of neurons in the hidden layer that affects an accuracy of the outputs.


Sign in / Sign up

Export Citation Format

Share Document