scholarly journals Application of artificial neural network to predict properties of diesel-biodiesel blends

Author(s):  
Jatinder Kumar ◽  
Ajay Bansal

The experimental determination of various properties of diesel-biodiesel mixtures is very time consuming as well as tedious process. Any tool helpful in estimation of these properties without experimentation can be of immense utility. In present work, other tools of determination of properties of diesel-biodiesel blends were tried. A traditional statistical technique of linear regression (principle of least squares) was used to estimate the flash point, fire point, density and viscosity of diesel and biodiesel mixtures. A set of seven neural network architectures, three training algorithms along with ten different sets of weight and biases were examined to choose best Artificial Neural Network (ANN) to predict the above-mentioned properties of dieselbiodiesel mixtures. The performance of both of the traditional linear regression and ANN techniques were then compared to check their validity to predict the properties of various mixtures of diesel and biodiesel. Key words: Biodiesel; Artificial Neural Network; Principle of least squares; Diesel; Linear Regression. DOI: 10.3126/kuset.v6i2.4017Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.98-103

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 766
Author(s):  
Rashad A. R. Bantan ◽  
Ramadan A. Zeineldin ◽  
Farrukh Jamal ◽  
Christophe Chesneau

Deanship of scientific research established by the King Abdulaziz University provides some research programs for its staff and researchers and encourages them to submit proposals in this regard. Distinct research study (DRS) is one of these programs. It is available all the year and the King Abdulaziz University (KAU) staff can submit more than one proposal at the same time up to three proposals. The rules of the DSR program are simple and easy so it contributes in increasing the international rank of KAU. The authors are offered financial and moral reward after publishing articles from these proposals in Thomson-ISI journals. In this paper, multiplayer perceptron (MLP) artificial neural network (ANN) is employed to determine the factors that have more effect on the number of ISI published articles. The proposed study used real data of the finished projects from 2011 to April 2019.


2019 ◽  
Vol 27 (03) ◽  
pp. 1950022 ◽  
Author(s):  
M. Prem Swarup ◽  
A. Prabhu Kumar

Value Engineering (VE) is a method for characterizing the developed requirements of a product, and it is concerned with the selection of less excessive conditions. VE can understand and improve the optimal outcome such as quantity, security, unwavering quality and convertibility of each managerial unit. It is an incredible solving tool that can diminish costs while preserving or improving performance and quality requirements. In this research work, VE is presented to calculate the heating cost and cooling cost of the air conditioner with the assistance of an Artificial Neural Network (ANN) with an optimization model. This ANN model effectively chooses the maximum number of sources obtainable and the source respective method with low functional cost and energy consumption. For improving the prediction accuracy of VE in the ANN model, we have incorporated some training algorithms and optimized the network hidden layer and hidden neuron by Opposition Genetic Algorithm (OGA). From the results, trained ANN with OGA predicts the output with 96.02% accuracy and also minimum errors compared with the existing GA process.


2011 ◽  
Vol 26 (2) ◽  
pp. 105-114 ◽  
Author(s):  
M. Khanmohammadi ◽  
N. Dallali ◽  
A. Bagheri Garmarudi ◽  
M. Zarnegar ◽  
K. Ghasemi

Partial Least Square (PLS) and Artificial Neural Network (ANN) techniques were compared during development of an analytical method for quantitative determination of sulfamethoxazole (SMX) and trimethoprim (TMP) in Co-Trimoxazole®suspension. The procedure was based on Attenuated Total Reflectance Fourier Transform Infrared (ATR–FTIR) spectrometry. The 800–2500 cm−1spectral region was selected for quantitative analysis.R2and relative error of prediction (REP) in PLS technique were (0.989, 2.128) and (0.986, 1.381) for SMX and TMP, respectively. These statistical parameters were improved using the ANN models considering the complexity of the sample and the speediness and simplicity of the method.R2and RMSEC in modified method were (0.997, 1.064) and (0.997, 0.634) for SMX and TMP, respectively.


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Gozde Pektas ◽  
Erdal Dinc ◽  
Dumitru Baleanu

Simultaneaous spectrophotometric determination of clorsulon (CLO) and invermectin (IVE) in commercial veterinary formulation was performed by using the artificial neural network (ANN) based on the back propagation algorithm. In order to find the optimal ANN model various topogical networks were tested by using different hidden layers. A logsig input layer, a hidden layer of neurons using the logsig transfer function and an output layer of two neurons with purelin transfer function was found suitable for basic configuration for ANN model. A calibration set consisting of CLO and IVE in calibration set was prepared in the concentration range of 1-23 �g/mL and 1-14 �g/mL, repectively. This calibration set contains 36 different synthetic mixtures. A prediction set was prepared in order to evaluate the recovery of the investigated approach ANN chemometric calibration was applied to the simultaneous analysis of CLO and IVE in compounds in a commercial veterinary formulation. The experimental results indicate that the proposed method is appropriate for the routine quality control of the above mentioned active compounds.


2007 ◽  
Vol 23 (9) ◽  
pp. 1091-1095 ◽  
Author(s):  
Mohamad Khayatzadeh MAHANI ◽  
Marzieh CHALOOSI ◽  
Mohamad Ghanadi MARAGHEH ◽  
Ali Reza KHANCHI ◽  
Daryoush AFZALI

2013 ◽  
Vol 3 (4) ◽  
pp. 243-250 ◽  
Author(s):  
Samira Arabgol ◽  
Hoo Sang Ko

Abstract Prompt and proper management of healthcare waste is critical to minimize the negative impact on the environment. Improving the prediction accuracy of the healthcare waste generated in hospitals is essential and advantageous in effective waste management. This study aims at developing a model to predict the amount of healthcare waste. For this purpose, three models based on artificial neural network (ANN), multiple linear regression (MLR), and combination of ANN and genetic algorithm (ANN-GA) are applied to predict the waste of 50 hospitals in Iran. In order to improve the performance of ANN for prediction, GA is applied to find the optimal initial weights in the ANN. The performance of the three models is evaluated by mean squared errors. The obtained results have shown that GA has significant impact on optimizing initial weights and improving the performance of ANN.


2017 ◽  
Vol 12 (3) ◽  
pp. 155892501701200 ◽  
Author(s):  
Kenan Yıldirimm ◽  
Hamdi Ogut ◽  
Yusuf Ulcay

In the manufacture of yarn, predicting the effect of changing production conditions is vital to reducing defects in the end product. This study compares, for the first time, non-linear regression and artificial neural network (ANN) models in predicting 10 yarn properties shaped by the influence of winding speed, quenching air temperature and/or quenching air speed during production. A multilayer perceptron ANN model was created by training 81 patterns using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The hyperbolic tangent, or TanH, activation function and logistic activation functions were used for the hidden and output layers respectively. Results showed that the ANN approach exhibited a greater prediction capability over the nonlinear regression method. ANN simultaneously predicted all of the 10 final properties of a yarn; tensile strength, tensile strain, draw force, crystallinity ratio, dye uptake based on the colour strengths (K/S), brightness, boiling shrinkage and yarn evenness, more accurately than the non-linear regression model (R2=0.97 vs. R2=0.92). These results lend support to the idea that the ANN analysis combined with optimization can be used successfully to prevent production defects by fine tuning the production environment.


Sign in / Sign up

Export Citation Format

Share Document