Heterogeneous Influence Maximization Through Community Detection in Social Networks

2021 ◽  
Vol 12 (4) ◽  
pp. 118-131
Author(s):  
Jaya Krishna Raguru ◽  
Devi Prasad Sharma

The problem of identifying a seed set composed of K nodes that increase influence spread over a social network is known as influence maximization (IM). Past works showed this problem to be NP-hard and an optimal solution to this problem using greedy algorithms achieved only 63% of spread. However, this approach is expensive and suffered from performance issues like high computational cost. Furthermore, in a network with communities, IM spread is not always certain. In this paper, heterogeneous influence maximization through community detection (HIMCD) algorithm is proposed. This approach addresses initial seed nodes selection in communities using various centrality measures, and these seed nodes act as sources for influence spread. A parallel influence maximization is applied with the aid of seed node set contained in each group. In this approach, graph is partitioned and IM computations are done in a distributed manner. Extensive experiments with two real-world datasets reveals that HCDIM achieves substantial performance improvement over state-of-the-art techniques.

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1004
Author(s):  
Mojtaba Borza ◽  
Azmin Sham Rambely

Optimizing the sum of linear fractional functions over a set of linear inequalities (S-LFP) has been considered by many researchers due to the fact that there are a number of real-world problems which are modelled mathematically as S-LFP problems. Solving the S-LFP is not easy in practice since the problem may have several local optimal solutions which makes the structure complex. To our knowledge, existing methods dealing with S-LFP are iterative algorithms that are based on branch and bound algorithms. Using these methods requires high computational cost and time. In this paper, we present a non-iterative and straightforward method with less computational expenses to deal with S-LFP. In the method, a new S-LFP is constructed based on the membership functions of the objectives multiplied by suitable weights. This new problem is then changed into a linear programming problem (LPP) using variable transformations. It was proven that the optimal solution of the LPP becomes the global optimal solution for the S-LFP. Numerical examples are given to illustrate the method.


2021 ◽  
Author(s):  
Tarun Kumer Biswas

The Influence Maximization (IM) problem aims at maximizing the diffusion of information or adoption of products among users in a social network by identifying and activating a set of initial users. In real-life applications, it is not unrealistic to have a higher activation cost for a user with higher influence. However, the existing works on IM consider finding the most influential users as the seed set, ignoring either the activation costs of such individual nodes and the total budget or the size of the seed set, which may not be always an optimal solution, particularly from the financial and managerial perspectives, respectively. To address these issues, we propose a more realistic and generalized formulation termed as multi-constraint influence maximization (MCIM) aiming to achieve a cost-effective solution under both budgetary and cardinality constraints. Unlike the existing IM formulations, the proposed MCIM is no longer a monotone but a submodular function. As it is also proved to be an NP-hard problem, we propose a simple additive weighting (SAW) assisted differential evolution (DE) algorithm for solving the large-size real-world problems. Experimental results on four real-world datasets show that the proposed formulation and algorithm are effective in finding a cost-effective seed set.


Author(s):  
Rosanna Grassi ◽  
Paolo Bartesaghi ◽  
Stefano Benati ◽  
Gian Paolo Clemente

AbstractUnderstanding the structure of communities in a network has a great importance in the economic analysis. Communities are indeed characterized by specific properties, that are different from those of both the individual nodes and the whole network, and they can affect various processes on the network. In the International Trade Network, community detection aims to search sets of countries (or of trade sectors) which have a high intra-cluster connectivity and a low inter-cluster connectivity. In general, exchanges among countries occur according to preferential economic relationships ranging over different sectors. In this paper, we combine community detection with specific topological indicators, such as centrality measures. As a result, a new weighted network is constructed from the original one, in which weights are determined taking into account all the topological indicators in a multi-criteria approach. To solve the resulting Clique Partitioning Problem and find homogeneous group of nations, we use a new fast algorithm, based on quick descents to a local optimal solution. The analysis allows to cluster countries by interconnections, economic power and intensity of trade, giving an important overview on the international trade patterns.


2021 ◽  
Author(s):  
Tarun Kumer Biswas

The Influence Maximization (IM) problem aims at maximizing the diffusion of information or adoption of products among users in a social network by identifying and activating a set of initial users. In real-life applications, it is not unrealistic to have a higher activation cost for a user with higher influence. However, the existing works on IM consider finding the most influential users as the seed set, ignoring either the activation costs of such individual nodes and the total budget or the size of the seed set, which may not be always an optimal solution, particularly from the financial and managerial perspectives, respectively. To address these issues, we propose a more realistic and generalized formulation termed as multi-constraint influence maximization (MCIM) aiming to achieve a cost-effective solution under both budgetary and cardinality constraints. Unlike the existing IM formulations, the proposed MCIM is no longer a monotone but a submodular function. As it is also proved to be an NP-hard problem, we propose a simple additive weighting (SAW) assisted differential evolution (DE) algorithm for solving the large-size real-world problems. Experimental results on four real-world datasets show that the proposed formulation and algorithm are effective in finding a cost-effective seed set.


2021 ◽  
Author(s):  
VIMAL KUMAR P. ◽  
Balasubramanian C.

Abstract With the epidemic growth of online social networks (OSNs), a large scale research on information dissemination in OSNs has been made an appearance in contemporary years. One of the essential researches is influence maximization (IM). Most research adopts community structure, greedy stage, and centrality measures, to identify the influence node set. However, the time consumed in analyzing the influence node set for edge server placement, service migration and service recommendation is ignored in terms of propagation delay. Considering the above analysis, we concentrate on the issue of time-sensitive influence maximization and maximize the targeted influence spread. To solve the problem, we propose a method called, Trilateral Spearman Katz Centrality-based Least Angle Regression (TSKC-LAR) for influential node tracing in social network is proposed. Besides, two algorithms are used in our work to find the influential node in social network with maximum influence spread and minimal time, namely Trilateral Statistical Node Extraction algorithm and Katz Centrality Least Angle Influence Node Tracing algorithm, respectively. Extensive experiments on The Telecom dataset demonstrate the efficiency and influence performance of the proposed algorithms on evaluation metrics, namely, sensitivity, specificity, accuracy, time and influence spread


2012 ◽  
Vol 2 (1) ◽  
pp. 7-9 ◽  
Author(s):  
Satinderjit Singh

Median filtering is a commonly used technique in image processing. The main problem of the median filter is its high computational cost (for sorting N pixels, the temporal complexity is O(N·log N), even with the most efficient sorting algorithms). When the median filter must be carried out in real time, the software implementation in general-purpose processorsdoes not usually give good results. This Paper presents an efficient algorithm for median filtering with a 3x3 filter kernel with only about 9 comparisons per pixel using spatial coherence between neighboring filter computations. The basic algorithm calculates two medians in one step and reuses sorted slices of three vertical neighboring pixels. An extension of this algorithm for 2D spatial coherence is also examined, which calculates four medians per step.


Author(s):  
Tung T. Vu ◽  
Ha Hoang Kha

In this research work, we investigate precoder designs to maximize the energy efficiency (EE) of secure multiple-input multiple-output (MIMO) systems in the presence of an eavesdropper. In general, the secure energy efficiency maximization (SEEM) problem is highly nonlinear and nonconvex and hard to be solved directly. To overcome this difficulty, we employ a branch-and-reduce-and-bound (BRB) approach to obtain the globally optimal solution. Since it is observed that the BRB algorithm suffers from highly computational cost, its globally optimal solution is importantly served as a benchmark for the performance evaluation of the suboptimal algorithms. Additionally, we also develop a low-complexity approach using the well-known zero-forcing (ZF) technique to cancel the wiretapped signal, making the design problem more amenable. Using the ZF based method, we transform the SEEM problem to a concave-convex fractional one which can be solved by applying the combination of the Dinkelbach and bisection search algorithm. Simulation results show that the ZF-based method can converge fast and obtain a sub-optimal EE performance which is closed to the optimal EE performance of the BRB method. The ZF based scheme also shows its advantages in terms of the energy efficiency in comparison with the conventional secrecy rate maximization precoder design.


1995 ◽  
Vol 32 (2) ◽  
pp. 95-103
Author(s):  
José A. Revilla ◽  
Kalin N. Koev ◽  
Rafael Díaz ◽  
César Álvarez ◽  
Antonio Roldán

One factor in determining the transport capacity of coastal interceptors in Combined Sewer Systems (CSS) is the reduction of Dissolved Oxygen (DO) in coastal waters originating from the overflows. The study of the evolution of DO in coastal zones is complex. The high computational cost of using mathematical models discriminates against the required probabilistic analysis being undertaken. Alternative methods, based on such mathematical modelling, employed in a limited number of cases, are therefore needed. In this paper two alternative methods are presented for the study of oxygen deficit resulting from overflows of CSS. In the first, statistical analyses focus on the causes of the deficit (the volume discharged). The second concentrates on the effects (the concentrations of oxygen in the sea). Both methods have been applied in a study of the coastal interceptor at Pasajes Estuary (Guipúzcoa, Spain) with similar results.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1438
Author(s):  
Patricia Conde-Cespedes

Complex networks analysis (CNA) has attracted so much attention in the last few years. An interesting task in CNA complex network analysis is community detection. In this paper, we focus on Local Community Detection, which is the problem of detecting the community of a given node of interest in the whole network. Moreover, we study the problem of finding local communities of high density, known as α-quasi-cliques in graph theory (for high values of α in the interval ]0,1[). Unfortunately, the higher α is, the smaller the communities become. This led to the maximal α-quasi-clique community of a given node problem, which is, the problem of finding local communities that are α-quasi-cliques of maximal size. This problem is NP-hard, then, to approach the optimal solution, some heuristics exist. When α is high (>0.5) the diameter of a maximal α-quasi-clique is at most 2. Based on this property, we propose an algorithm to calculate an upper bound to approach the optimal solution. We evaluate our method in real networks and conclude that, in most cases, the bound is very accurate. Furthermore, for a real small network, the optimal value is exactly achieved in more than 80% of cases.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 891
Author(s):  
Aurea Grané ◽  
Alpha A. Sow-Barry

This work provides a procedure with which to construct and visualize profiles, i.e., groups of individuals with similar characteristics, for weighted and mixed data by combining two classical multivariate techniques, multidimensional scaling (MDS) and the k-prototypes clustering algorithm. The well-known drawback of classical MDS in large datasets is circumvented by selecting a small random sample of the dataset, whose individuals are clustered by means of an adapted version of the k-prototypes algorithm and mapped via classical MDS. Gower’s interpolation formula is used to project remaining individuals onto the previous configuration. In all the process, Gower’s distance is used to measure the proximity between individuals. The methodology is illustrated on a real dataset, obtained from the Survey of Health, Ageing and Retirement in Europe (SHARE), which was carried out in 19 countries and represents over 124 million aged individuals in Europe. The performance of the method was evaluated through a simulation study, whose results point out that the new proposal solves the high computational cost of the classical MDS with low error.


Sign in / Sign up

Export Citation Format

Share Document