Observation of Success Status of Employees in E-Learning Courses in Organizations with Data Mining

2017 ◽  
Vol 9 (1) ◽  
pp. 38-49
Author(s):  
Fatma Önay Koçoğlu ◽  
İlkim Ecem Emre ◽  
Çiğdem Selçukcan Erol

The aim of this study is to analyze success in e-learning with data mining methods and find out potential patterns. In this context, 374.073 data of 2013-14 period taken from an institution serving in e-learning field in Turkey are used. Data set, which is collected from information technology, banking and pharmaceutical industries, includes success and industry of employees', trainings which they complete, whether the trainings are completed, first login and last logout dates, training completion date and duration of experience in training. Using this data set, success status of participants is observed by using data mining methods (C5.0, Random Forest and Gini). By observing using accuracy, error rate, specificity and f- score from performance evaluation criteria, C5.0 has chosen the algorithm which gives the best performance results. According to the results of the study, it has been determined that the sectors of the employees are not important, on the contrary the ones that are important are the completion status, the duration of experience and training.

2017 ◽  
Vol 9 (1) ◽  
pp. 50-58
Author(s):  
Ali Bayır ◽  
Sebnem Ozdemir ◽  
Sevinç Gülseçen

Political elections can be defined as systems that contain political tendencies and voters' perceptions and preferences. The outputs of those systems are formed by specific attributes of individuals such as age, gender, occupancy, educational status, socio-economic status, religious belief, etc. Those attributes can create a data set, which contains hidden information and undiscovered patterns that can be revealed by using data mining methods and techniques. The main purpose of this study is to define voting tendencies in politics by using some of data mining methods. According to that purpose, the survey results, which were prepared and applied before 2011 elections of Turkey by KONDA Research and Consultancy Company, were used as raw data set. After Preprocessing of data, models were generated via data mining algorithms, such as Gini, C4.5 Decision Tree, Naive Bayes and Random Forest. Because of increasing popularity and flexibility in analyzing process, R language and Rstudio environment were used.


2015 ◽  
Vol 63 (4) ◽  
pp. 923-932 ◽  
Author(s):  
C. Jankowski ◽  
D. Reda ◽  
M. Mańkowski ◽  
G. Borowik

Abstract Discretization is one of the most important parts of decision table preprocessing. Transforming continuous values of attributes into discrete intervals influences further analysis using data mining methods. In particular, the accuracy of generated predictions is highly dependent on the quality of discretization. The paper contains a description of three new heuristic algorithms for discretization of numeric data, based on Boolean reasoning. Additionally, an entropy-based evaluation of discretization is introduced to compare the results of the proposed algorithms with the results of leading university software for data analysis. Considering the discretization as a data compression method, the average compression ratio achieved for databases examined in the paper is 8.02 while maintaining the consistency of databases at 100%.


2017 ◽  
Vol 107 (10) ◽  
pp. 773-778
Author(s):  
S. Krzoska ◽  
M. Eickelmann ◽  
J. Schmitt ◽  
J. Prof. Deuse

Der Fachbeitrag zeigt am Beispiel der Nacharbeitssteuerung und Arbeitsprozessoptimierung in der Automobilmontage, wie produkt- und prozessbezogene Qualitätsdaten durch den Einsatz von Data Mining-Methoden analysiert sowie effizient genutzt werden können. Dazu wurden Daten aus Manufacturing-Execution-Systemen (MES) mithilfe von Regressionsbäumen zur Entwicklung einer fahrzeugspezifischen Nacharbeitsdauerprognose ausgewertet. Das grundlegende Data Mining-Konzept sowie die Pilotierungsergebnisse werden nachfolgend dargestellt.   The article shows at the example of rework control and operating process optimization in the car assembly how recorded product- and process-related quality data can be analyzed and used efficiently by using Data Mining-methods. With data from MES-systems regression trees were built for a vehicle-specific rework duration forecast. The basic concept and validation results will be presented below.


2022 ◽  
Vol 201 ◽  
pp. 110855
Author(s):  
Hoheok Kim ◽  
Yuuki Arisato ◽  
Junya Inoue

Author(s):  
S. Xydas ◽  
A.S. Hassan ◽  
C.E. Marmaras ◽  
N. Jenkins ◽  
L.M. Cipcigan

2015 ◽  
Vol 11 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Mohsen Kakavand ◽  
Norwati Mustapha ◽  
Aida Mustapha ◽  
Mohd Taufik Abdullah ◽  
Hamed Riahi

Sign in / Sign up

Export Citation Format

Share Document