scholarly journals Activity recognition from Smartphone data using WSVM-HMM classification

A lot of real-life mobile sensing applications are becoming available nowadays. The traditional approach for activity recognition employs machine learning algorithms to learn from collected data from smartphpne and induce a model. The model generation is usually performed offline on a server system and later deployed to the phone for activity recognition. In this paper, we propose a new hybrid classification model to perform automatic recognition of activities using built-in embedded sensors present in smartphones. The proposed method uses a trick to classify the ongoing activity by combining Weighted Support Vector Machines (WSVM) model and Hidden Markov Model (HMM) model. The sensory inputs to the classifier are reduced with the Linear Discriminant Analysis (LDA). We demonstrate how to train the hybrid approach in this setting, introduce an adaptive regularization parameter for WSVM approach, and illustrate how our proposed method outperforms the state-of-the-art on a large benchmark dataset.

Author(s):  
M'hamed Bilal Abidine ◽  
Belkacem Fergani

A lot of real-life mobile sensing applications are becoming available nowadays. The traditional approach for activity recognition employs machine learning algorithms to learn from collected data from smartphpne and induce a model. The model generation is usually performed offline on a server system and later deployed to the phone for activity recognition. In this paper, we propose a new hybrid classification model to perform automatic recognition of activities using built-in embedded sensors present in smartphones. The proposed method uses a trick to classify the ongoing activity by combining Weighted Support Vector Machines (WSVM) model and Hidden Markov Model (HMM) model. The sensory inputs to the classifier are reduced with the Linear Discriminant Analysis (LDA). We demonstrate how to train the hybrid approach in this setting, introduce an adaptive regularization parameter for WSVM approach, and illustrate how our proposed method outperforms the state-of-the-art on a large benchmark dataset.


2021 ◽  
Vol 15 (1) ◽  
pp. 1-15
Author(s):  
M’hamed Bilal Abidine ◽  
Belkacem Fergani

Mobile phone based activity recognition uses data obtained from embedded sensors to infer user’s physical activities. The traditional approach for activity recognition employs machine learning algorithms to learn from collected labeled data and induce a model. To enhance the accuracy and hence to improve the overall efficiency of the system, the good classifiers can be combined together. Fusion can be done at the feature level and also at the decision level. In this work, we propose a new hybrid classification model Weighted SVM-KNN to perform automatic recognition of activities that combines a Weighted Support Vector Machines (WSVM) to learn a model with a Weighted K-Nearest Neighbors (WKNN), to classify and identify the ongoing activity. The sensory inputs to the classifier are reduced with the Linear Discriminant Analysis (LDA). We demonstrate how to train the hybrid approach in this setting, introduce an adaptive regularization parameter for WSVM approach, and illustrate how our method outperforms the state-of-the-art on a large benchmark datasets.


2020 ◽  
Vol 23 (4) ◽  
pp. 274-284 ◽  
Author(s):  
Jingang Che ◽  
Lei Chen ◽  
Zi-Han Guo ◽  
Shuaiqun Wang ◽  
Aorigele

Background: Identification of drug-target interaction is essential in drug discovery. It is beneficial to predict unexpected therapeutic or adverse side effects of drugs. To date, several computational methods have been proposed to predict drug-target interactions because they are prompt and low-cost compared with traditional wet experiments. Methods: In this study, we investigated this problem in a different way. According to KEGG, drugs were classified into several groups based on their target proteins. A multi-label classification model was presented to assign drugs into correct target groups. To make full use of the known drug properties, five networks were constructed, each of which represented drug associations in one property. A powerful network embedding method, Mashup, was adopted to extract drug features from above-mentioned networks, based on which several machine learning algorithms, including RAndom k-labELsets (RAKEL) algorithm, Label Powerset (LP) algorithm and Support Vector Machine (SVM), were used to build the classification model. Results and Conclusion: Tenfold cross-validation yielded the accuracy of 0.839, exact match of 0.816 and hamming loss of 0.037, indicating good performance of the model. The contribution of each network was also analyzed. Furthermore, the network model with multiple networks was found to be superior to the one with a single network and classic model, indicating the superiority of the proposed model.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 405
Author(s):  
Marcos Lupión ◽  
Javier Medina-Quero ◽  
Juan F. Sanjuan ◽  
Pilar M. Ortigosa

Activity Recognition (AR) is an active research topic focused on detecting human actions and behaviours in smart environments. In this work, we present the on-line activity recognition platform DOLARS (Distributed On-line Activity Recognition System) where data from heterogeneous sensors are evaluated in real time, including binary, wearable and location sensors. Different descriptors and metrics from the heterogeneous sensor data are integrated in a common feature vector whose extraction is developed by a sliding window approach under real-time conditions. DOLARS provides a distributed architecture where: (i) stages for processing data in AR are deployed in distributed nodes, (ii) temporal cache modules compute metrics which aggregate sensor data for computing feature vectors in an efficient way; (iii) publish-subscribe models are integrated both to spread data from sensors and orchestrate the nodes (communication and replication) for computing AR and (iv) machine learning algorithms are used to classify and recognize the activities. A successful case study of daily activities recognition developed in the Smart Lab of The University of Almería (UAL) is presented in this paper. Results present an encouraging performance in recognition of sequences of activities and show the need for distributed architectures to achieve real time recognition.


2021 ◽  
Vol 11 (12) ◽  
pp. 3110-3116
Author(s):  
Jansi Rani Sella Veluswami ◽  
M. Ezhil Prasanth ◽  
K. Harini ◽  
U. Ajaykumar

Melanoma skin cancer is a common disease that develops in the melanocytes that produces melanin. In this work, a deep hybrid learning model is engaged to distinguish the skin cancer and classify them. The dataset used contains two classes of skin cancer–benign and malignant. Since the dataset is imbalanced between the number of images in malignant lesions and benign lesions, augmentation technique is used to balance it. To improve the clarity of the images, the images are then enhanced using Contrast Limited Adaptive Histogram Equalization Technique (CLAHE) technique. To detect only the affected lesion area, the lesions are segmented using the neural network based ensemble model which is the result of combining the segmentation algorithms of Fully Convolutional Network (FCN), SegNet and U-Net which produces a binary image of the skin and the lesion, where the lesion is represented with white and the skin is represented by black. These binary images are further classified using different pre-trained models like Inception ResNet V2, Inception V3, Resnet 50, Densenet and CNN. Following that fine tuning of the best performing pre-trained model is carried out to improve the performance of classification. To further improve the performance of the classification model, a method of combining deep learning (DL) and machine learning (ML) is carried out. Using this hybrid approach, the feature extraction is done using DL models and the classification is performed by Support Vector Machine (SVM). This computer aided tool will assist doctors in diagnosing the disease faster than the traditional method. There is a significant improvement of nearly 4% increase in the performance of the proposed method is presented.


Author(s):  
S. R. Mani Sekhar ◽  
G. M. Siddesh

Machine learning is one of the important areas in the field of computer science. It helps to provide an optimized solution for the real-world problems by using past knowledge or previous experience data. There are different types of machine learning algorithms present in computer science. This chapter provides the overview of some selected machine learning algorithms such as linear regression, linear discriminant analysis, support vector machine, naive Bayes classifier, neural networks, and decision trees. Each of these methods is illustrated in detail with an example and R code, which in turn assists the reader to generate their own solutions for the given problems.


2011 ◽  
Vol 230-232 ◽  
pp. 625-628
Author(s):  
Lei Shi ◽  
Xin Ming Ma ◽  
Xiao Hong Hu

E-bussiness has grown rapidly in the last decade and massive amount of data on customer purchases, browsing pattern and preferences has been generated. Classification of electronic data plays a pivotal role to mine the valuable information and thus has become one of the most important applications of E-bussiness. Support Vector Machines are popular and powerful machine learning techniques, and they offer state-of-the-art performance. Rough set theory is a formal mathematical tool to deal with incomplete or imprecise information and one of its important applications is feature selection. In this paper, rough set theory and support vector machines are combined to construct a classification model to classify the data of E-bussiness effectively.


2019 ◽  
Vol 8 (4) ◽  
pp. 160 ◽  
Author(s):  
Bingxin Liu ◽  
Ying Li ◽  
Guannan Li ◽  
Anling Liu

Spectral characteristics play an important role in the classification of oil film, but the presence of too many bands can lead to information redundancy and reduced classification accuracy. In this study, a classification model that combines spectral indices-based band selection (SIs) and one-dimensional convolutional neural networks was proposed to realize automatic oil films classification using hyperspectral remote sensing images. Additionally, for comparison, the minimum Redundancy Maximum Relevance (mRMR) was tested for reducing the number of bands. The support vector machine (SVM), random forest (RF), and Hu’s convolutional neural networks (CNN) were trained and tested. The results show that the accuracy of classifications through the one dimensional convolutional neural network (1D CNN) models surpassed the accuracy of other machine learning algorithms such as SVM and RF. The model of SIs+1D CNN could produce a relatively higher accuracy oil film distribution map within less time than other models.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qi Wan ◽  
Jiaxuan Zhou ◽  
Xiaoying Xia ◽  
Jianfeng Hu ◽  
Peng Wang ◽  
...  

ObjectiveTo evaluate the performance of 2D and 3D radiomics features with different machine learning approaches to classify SPLs based on magnetic resonance(MR) T2 weighted imaging (T2WI).Material and MethodsA total of 132 patients with pathologically confirmed SPLs were examined and randomly divided into training (n = 92) and test datasets (n = 40). A total of 1692 3D and 1231 2D radiomics features per patient were extracted. Both radiomics features and clinical data were evaluated. A total of 1260 classification models, comprising 3 normalization methods, 2 dimension reduction algorithms, 3 feature selection methods, and 10 classifiers with 7 different feature numbers (confined to 3–9), were compared. The ten-fold cross-validation on the training dataset was applied to choose the candidate final model. The area under the receiver operating characteristic curve (AUC), precision-recall plot, and Matthews Correlation Coefficient were used to evaluate the performance of machine learning approaches.ResultsThe 3D features were significantly superior to 2D features, showing much more machine learning combinations with AUC greater than 0.7 in both validation and test groups (129 vs. 11). The feature selection method Analysis of Variance(ANOVA), Recursive Feature Elimination(RFE) and the classifier Logistic Regression(LR), Linear Discriminant Analysis(LDA), Support Vector Machine(SVM), Gaussian Process(GP) had relatively better performance. The best performance of 3D radiomics features in the test dataset (AUC = 0.824, AUC-PR = 0.927, MCC = 0.514) was higher than that of 2D features (AUC = 0.740, AUC-PR = 0.846, MCC = 0.404). The joint 3D and 2D features (AUC=0.813, AUC-PR = 0.926, MCC = 0.563) showed similar results as 3D features. Incorporating clinical features with 3D and 2D radiomics features slightly improved the AUC to 0.836 (AUC-PR = 0.918, MCC = 0.620) and 0.780 (AUC-PR = 0.900, MCC = 0.574), respectively.ConclusionsAfter algorithm optimization, 2D feature-based radiomics models yield favorable results in differentiating malignant and benign SPLs, but 3D features are still preferred because of the availability of more machine learning algorithmic combinations with better performance. Feature selection methods ANOVA and RFE, and classifier LR, LDA, SVM and GP are more likely to demonstrate better diagnostic performance for 3D features in the current study.


Sign in / Sign up

Export Citation Format

Share Document