Inverse Problem Method to Optimize Cascade Heat Exchange Network in Central Heating System

2020 ◽  
Vol 9 (3) ◽  
pp. 62-82
Author(s):  
Yin Zhang ◽  
Yinping Zhang ◽  
Xin Wang

In central heating systems, heat is often transferred from heat source to users by the heat network where several heat exchangers are installed at the heat source, substations, and terminals. In this article, the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in a series is established. The aim is to maximize the cold fluid temperature for a given hot fluid temperature and overall heating capacity, the optimal heat exchange area distribution, and the medium fluid flow rates are determined through an inverse problem and variation method. The results show that the heat exchange areas should be distributed equally for each heat exchanger. It also indicates that in order to improve the thermal performance of the whole system, more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small.

2020 ◽  
Vol 56 (1-2) ◽  
pp. 54-59
Author(s):  
O. Yakovleva ◽  
O. Ostapenko ◽  
V. Trandafilov

Energy efficiency projects deployment for Ukraine is one of the challenging task today. Ukrainian in­dustry faces very complex environment for project development as well as its deployment within organization nowadays. UA Policy struggle to keep place on the European market to have possibility not only be a part of global policy but to go forward and to bring benefits for macro and micro economy. Fresh breath by integration energy systems within project management into business model of organization let to move closer to hold under control energy efficiency projects realization and avoid financial risks. Environmental policy and energy policy play crucial role for Ukrainian transformation into European pla­yer. Presented proactive plan provides possibilities to deliver the intended economic and environmental benefits of the Ukrainian energy labelling and ecological design directives. These directives are in use or are under development process by increasing the rates of compliance with their energy efficiency requirements. To start from the energy efficiency development process investigation in order to have possibilities to make corrections on the stage of modeling and design can bring benefits and reduce costs for end users. To evaluate the efficiency of heat exchangers, there are over 40 different private integral energy efficiency criteria. Such a number makes the estimation of heat exchangers not always objective and sufficiently definite, which does not allow to algorithmize the task of determining the efficiency of heat exchangers. On the foundation of the system element representation for the heat exchange network, the concepts of energy potential and energy efficiency of energy exchange are proposed. The obtained equations allow us to determine the efficiency of energy exchange not only for an element of the heat exchange network, but also for a complex system as a whole with a minimum of information about the system


2011 ◽  
Vol 199-200 ◽  
pp. 1509-1512
Author(s):  
Yu Lin Ge ◽  
Ping Wang ◽  
Sheng Qiang Shen ◽  
Jun Liang Xu

Mathematical programming model for synthesis of heat exchanger network for distillation unit is established. MINLP problem for heat exchanger network is solved by branch-bound method. Two kinds of heat exchanger network with splitting stream and without splitting stream are obtained. 142 heat exchangers, 8 coolers and 4 heaters are needed in the heat exchanger network without splitting stream. 34 heat exchangers, 8 coolers, 4 heaters, 11 splitters and 11 mixers are needed in the heat exchanger network with splitting stream. The matching situation including heat load, heat exchange area, duty of utilities, flow fraction of splitting, temperature of inlet and outlet, etc. for cold and hot streams in the heat exchanger network with splitting stream is presented in detail, Analysis the relationship between total heat exchange area, total heat load, total capital cost and annual operation cost of the heat exchanger network. Taking the number of heat exchangers and operational flexibility of heat exchange network into consideration, the heat exchanger network with splitting stream is suggested to be selected.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 594
Author(s):  
Tao Zhou ◽  
Bingchao Chen ◽  
Huanling Liu

In recent years, in order to obtain a radiator with strong heat exchange capacity, researchers have proposed a lot of heat exchangers to improve heat exchange capacity significantly. However, the cooling abilities of heat exchangers designed by traditional design methods is limited even if the geometric parameters are optimized at the same time. However, using topology optimization to design heat exchangers can overcome this design limitation. Furthermore, researchers have used topology optimization theory to designed one-to-one and many-to-many inlet and outlet heat exchangers because it can effectively increase the heat dissipation rate. In particular, it can further decrease the hot-spot temperature for many-to-many inlet and outlet heat exchangers. Therefore, this article proposes novel heat exchangers with three inlets and one outlet designed by topology optimization to decrease the fluid temperature at the outlet. Subsequently, the effect of the channel depth on the heat exchanger design is also studied. The results show that the type of exchanger varies with the channel depth, and there exists a critical depth value for obtaining the minimum substrate temperature difference. Then, the flow and heat transfer performance of the heat exchangers are numerically investigated. The numerical results show that the heat exchanger derived by topology optimization with the minimum temperature difference as the goal (Model-2) is the best design for flow and heat transfer performance compared to other heat sink designs, including the heat exchanger derived by topology optimization having the average temperature as the goal (Model-1) and conventional straight channels (Model-3). The temperature difference of Model-1 can be reduced by 37.5%, and that of Model-2 can be decreased by 62.5% compared to Model-3. Compared with Model-3, the thermal resistance of Model-1 can be reduced by 21.86%, while that of Model-2 can be decreased by 47.99%. At room temperature, we carried out the forced convention experimental test for Model-2 to measure its physical parameters (temperature, pressure drop) to verify the numerical results. The error of the average wall temperature between experimental results and simulation results is within 2.6 K, while that of the fluid temperature between the experimental and simulation results is within 1.4 K, and the maximum deviation of the measured Nu and simulated Nu was less than 5%. This indicated that the numerical results agreed well with the experimental results.


Author(s):  
Xiao Wang ◽  
Lin Fu ◽  
Xiling Zhao ◽  
Hua Liu

In recent years, with the continuous urban expansion, the central heating sources are commonly insufficient in the areas of Northern China. Besides, the increasing heat transfer temperature difference results in more and more exergy loss between the primary heat network and the secondary heat network. This paper introduces a new central heating system which combines the urban heat network with geothermal energy (CHSCHNGE). In this system, the absorption heat exchange unit, which is composed of an absorption heat pump and a water to water heat exchanger, is as alternative to the conventional water to water heat exchanger at the heat exchange station, and the doing work ability of the primary heat network is utilized to drive the absorption heat pump to extract the shallow geothermal energy. In this way, the heat supply ability of the system will be increased with fewer additional energy consumptions. Since the water after driving the absorption heat pump has high temperature, it can continue to heat the supply water coming from the absorption heat pump. As a result, the water of the primary heat network will be stepped cooled and the exergy loss will be reduced. In this study, the performance of the system is simulated based on the mathematical models of the heat source, the absorption heat exchange unit, the ground heat exchanger and the room. The thermodynamic analyses are performed for three systems and the energy efficiency and exergy efficiency are compared. The results show that (a) the COP of the absorption heat exchange unit is 1.25 and the heating capacity of the system increases by 25%, which can effectively reduce the requirements of central heating sources; (b) the PER of the system increases 14.4% more than that of the conventional co-generation central heating system and 54.1% more than that of the ground source heat pump system; (c) the exergy efficiency of the CHSCHNGE is 17.6% higher than that of the conventional co-generation central heating system and 45.6% higher than that of the ground source heat pump system.


1964 ◽  
Vol 86 (2) ◽  
pp. 121-126 ◽  
Author(s):  
J. R. Mondt

Design, fabrication, and operation experience with periodic-flow heat exchangers used in General Motors regenerative vehicular gas turbines has indicated that analysis techniques available in published reports are too restrictive for accurate performance and thermal distortion calculations. The design usefulness of previously published analyses is somewhat limited because fluid and metal temperature distributions are not part of the calculated results. These distributions are required for primary seal matching and core and structural thermal stress calculations. A nodal analysis has been accomplished at the General Motors Research Laboratories and a type of finite difference solution obtained for the periodic-flow heat exchanger. This solution can be used to study the effects of longitudinal thermal conduction, variable heat-transfer coefficients, finite rotation, and provides temperature distributions as functions of time and space for transient as well as “steady-state.” This has been checked both with available solutions for more simplified cases and some experimental measured results for periodic flow heat exchangers designed and built as part of the General Motors vehicular regenerative gas turbine program. A brief outline of the calculation procedures, program capabilities, and some calculated results is presented. This includes temperature distributions for periodic-flow heat-exchanger parameters encountered in the vehicular regenerator application.


2020 ◽  
Vol 178 ◽  
pp. 01026
Author(s):  
Natalia Rydalina ◽  
Oleg Stepanov ◽  
Elena Antonova

Heat exchangers are widely used in heat supply systems. To increase the efficiency of heat supply systems, heat exchangers with porous metals are proposed to design. There was a test facility set up to study new types of heat exchangers. The countercurrent flow of heat carriers was activated in those heat exchangers. Freon moved through the heat exchanger pores, and water moved through the inner tubes. It should be noted that the porous materials in the heat exchangers differed in the coefficient of porosity. To be compared, one of the heat exchangers did not contain any porous material. The first test cycle proved the feasibility of using porous metals in heat exchange equipment. Afterwards, a simplified mathematical model of the heat exchanger was compiled. Such an analytical form makes a solution convenient for engineering calculations. Numerical calculations based on this model were compared with the experimental data. Heat transfer intensity of materials with different porosity was compared.


2018 ◽  
Vol 13 (1) ◽  
pp. 71-76
Author(s):  
Vasyl Zhelykh ◽  
Olena Savchenko ◽  
Vadym Matusevych

Abstract To save traditional energy sources in mechanical ventilation systems, it is advisable to use low-energy ground energy for preheating or cooling the outside air. Heat exchange between ground and outside air occurs in ground heat exchangers. Many factors influence the process of heat transfer between air in the heat exchanger and the ground, in particular geological and climatic parameters of the construction site, parameters of the ventilation air in the projected house, physical and geometric parameters of the heat exchanger tube. Part of the parameters when designing a ventilation system with earth-air heat exchangers couldn’t be changed. The one of the factors, the change which directly affects the process of heat transfer between ground and air, is convective heat transfer coefficient from the internal surface of the heat exchanger tube. In this article the designs of a horizontal earthair heat exchanger with heat pipes was proposed. The use of heat pipes in designs of a horizontal heat exchanger allows intensification of the process of heat exchange by turbulence of air flow inside the heat exchanger. Besides this, additionally heat transfer from the ground to the air is carried out at the expense of heat transfer in the heat pipe itself.


Sign in / Sign up

Export Citation Format

Share Document