A Novel Application Offloading Algorithm and an Optimized Application Servers Placement for Mobile Cloud Computing

2015 ◽  
Vol 6 (4) ◽  
pp. 19-38
Author(s):  
Amal Ellouze ◽  
Maurice Gagnaire

An application's offloading algorithm to over go the limitations of mobile terminals, namely their lack of computing capacity and limited battery autonomy is introduced. The proposed Mobile Application's Offloading algorithm enables to shift applicative jobs from mobile handsets to remote servers. The novelty of MAO consists in considering the Quality of Experience as an additional decision test before proceeding to application offloading. Based on various traffic scenarios, researchers study the efficiency of the MAO algorithm and show its performance in terms of rejected jobs and energy savings. First, the researchers consider the case where the application servers were placed systematically at the antenna's site. For a more realistic context of Mobile Cloud Computing, they extend the analysis by considering the case where the remote servers can be placed at different splitting points of the infrastructure. They assess by means of closed-forms fitting functions the performance of the MAO algorithm. Authors end this article with proposing an optimized applications servers placement.

Author(s):  
J. Arockia Mary ◽  
P. Xavier Jeba ◽  
P. Mercy

In mobile device, the resources such as computation, storage, power are limited. Quality of Experience (QoE) of user in these limited resource mobile device is not satisfied. Mobile cloud computing is a new computation paradigm to increase Quality of Service (QoS) of mobile applications by scheduling the offloaded tasks into the cloud. The scheduling of tasks is done in four architectures of mobile cloud computing. Two types of scheduling are done with lot of constraints such as data transmission, task dependency and cost etc. Different scheduling techniques are developed to improve the QoE of mobile users.


Author(s):  
Tianqi Jing ◽  
Shiwen He ◽  
Fei Yu ◽  
Yongming Huang ◽  
Luxi Yang ◽  
...  

AbstractCooperation between the mobile edge computing (MEC) and the mobile cloud computing (MCC) in offloading computing could improve quality of service (QoS) of user equipments (UEs) with computation-intensive tasks. In this paper, in order to minimize the expect charge, we focus on the problem of how to offload the computation-intensive task from the resource-scarce UE to access point’s (AP) and the cloud, and the density allocation of APs’ at mobile edge. We consider three offloading computing modes and focus on the coverage probability of each mode and corresponding ergodic rates. The resulting optimization problem is a mixed-integer and non-convex problem in the objective function and constraints. We propose a low-complexity suboptimal algorithm called Iteration of Convex Optimization and Nonlinear Programming (ICONP) to solve it. Numerical results verify the better performance of our proposed algorithm. Optimal computing ratios and APs’ density allocation contribute to the charge saving.


Author(s):  
Zhefu Shi ◽  
Cory Beard

Mobile Cloud Computing (MCC) integrates cloud computing into the mobile environment and overcomes obstacles related to performance (e.g., bandwidth, throughput) and environment (e.g., heterogeneity, scalability, and availability). Quality of Service (QoS), such as end-to-end delay, packet loss ratio, etc., is vital for MCC applications. In this chapter, several important approaches for performance evaluation in MCC are introduced. These approaches, such as Markov Processes, Scheduling, and Game Theory, are the most popular methodologies in current research about performance evaluation in MCC. QoS is special in MCC compared to other environments. Important QoS problems with details in MCC and corresponding designs and solutions are explained. This chapter covers the most important research problems and current status related to performance evaluation and QoS in MCC.


Author(s):  
Claudio Estevez

Cloud computing is consistently proving to be the dominant architecture of the future, and mobile technology is the catalyst. By having the processing power and storage remotely accessible, the main focus of the terminal is now related to connectivity and user-interface. The success of cloud-based applications greatly depends on the throughput experienced by the end user, which is why transport protocols play a key role in mobile cloud computing. This chapter discusses the main issues encountered in cloud networks that affect connection-oriented transport protocols. These issues include, but are not limited to, large delay connections, bandwidth variations, power consumption, and high segment loss rates. To reduce these adverse effects, a set of proposed solutions are presented; furthermore, the advantages and disadvantages are discussed. Finally, suggestions are made for future mobile cloud computing transport-layer designs that address different aspects of the network, such as transparency, congestion-intensity estimation, and quality-of-service integration.


2015 ◽  
pp. 1561-1584
Author(s):  
Hassan Takabi ◽  
Saman Taghavi Zargar ◽  
James B. D. Joshi

Mobile cloud computing has grown out of two hot technology trends, mobility and cloud. The emergence of cloud computing and its extension into the mobile domain creates the potential for a global, interconnected mobile cloud computing environment that will allow the entire mobile ecosystem to enrich their services across multiple networks. We can utilize significant optimization and increased operating power offered by cloud computing to enable seamless and transparent use of cloud resources to extend the capability of resource constrained mobile devices. However, in order to realize mobile cloud computing, we need to develop mechanisms to achieve interoperability among heterogeneous and distributed devices. We need solutions to discover best available resources in the cloud servers based on the user demands and approaches to deliver desired resources and services efficiently and in a timely fashion to the mobile terminals. Furthermore, while mobile cloud computing has tremendous potential to enable the mobile terminals to have access to powerful and reliable computing resources anywhere and anytime, we must consider several issues including privacy and security, and reliability in realizing mobile cloud computing. In this chapter, the authors first explore the architectural components required to realize a mobile cloud computing infrastructure. They then discuss mobile cloud computing features with their unique privacy and security implications. They present unique issues of mobile cloud computing that exacerbate privacy and security challenges. They also discuss various approaches to address these challenges and explore the future work needed to provide a trustworthy mobile cloud computing environment.


Author(s):  
Khadija Akherfi ◽  
Hamid Harroud ◽  
Michael Gerndt

With the recent advances in cloud computing and the improvement in the capabilities of mobile devices in terms of speed, storage, and computing power, Mobile Cloud Computing (MCC) is emerging as one of important branches of cloud computing. MCC is an extension of cloud computing with the support of mobility. In this paper, the authors first present the specific concerns and key challenges in mobile cloud computing. They then discuss the different approaches to tackle the main issues in MCC that have been introduced so far, and finally focus on describing the proposed overall architecture of a middleware that will contribute to providing mobile users data storage and processing services based on their mobile devices capabilities, availability, and usage. A prototype of the middleware is developed and three scenarios are described to demonstrate how the middleware performs in adapting the provision of cloud web services by transforming SOAP messages to REST and XML format to JSON, in optimizing the results by extracting relevant information, and in improving the availability by caching. Initial analysis shows that the mobile cloud middleware improves the quality of service for mobiles, and provides lightweight responses for mobile cloud services.


Author(s):  
Archana Kero ◽  
Abhirup Khanna ◽  
Devendra Kumar ◽  
Amit Agarwal

The widespread acceptability of mobile devices in present times have caused their applications to be increasingly rich in terms of the functionalities they provide to the end users. Such applications might be very prevalent among users but the execution results in dissipating many of the device end resources. Mobile cloud computing (MCC) has a solution to this problem by offloading certain parts of the application to cloud. At the first place, one might find computation offloading quite promising in terms of saving device end resources but eventually may result in being the other way around if performed in a static manner. Frequent changes in device end resources and computing environment variables may lead to a reduction in the efficiency of offloading techniques and even cause a drop in the quality of service for applications involving the use of real-time information. In order to overcome this problem, the authors propose an adaptive computation offloading framework for data stream applications wherein applications are partitioned dynamically followed by being offloaded depending upon the device end parameters, network conditions, and cloud resources. The article also talks about the proposed algorithm that depicts the workflow of the offloading model. The proposed model is simulated using the CloudSim simulator. In the end, the authors illustrate the working of the proposed system along with the simulated results.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xin Zheng ◽  
Yu Nan ◽  
Fangsu Wang ◽  
Ruiqing Song ◽  
Gang Zheng ◽  
...  

Considering the widespread use of mobile devices and the increased performance requirements of mobile users, shifting the complex computing and storage requirements of mobile terminals to the cloud is an effective way to solve the limitation of mobile terminals, which has led to the rapid development of mobile cloud computing. How to reduce and balance the energy consumption of mobile terminals and clouds in data transmission, as well as improve energy efficiency and user experience, is one of the problems that green cloud computing needs to solve. This paper focuses on energy optimization in the data transmission process of mobile cloud computing. Considering that the data generation rate is variable, because of the instability of the wireless connection, combined with the transmission delay requirement, a strategy based on the optimal stopping theory to minimize the average transmission energy of the unit data is proposed. By constructing a data transmission queue model with multiple applications, an admission rule that is superior to the top candidates is proposed by using secretary problem of selecting candidates with the lowest average absolute ranking. Then, it is proved that the rule has the best candidate. Finally, experimental results show that the proposed optimization strategy has lower average energy per unit of data, higher energy efficiency, and better average scheduling period.


Sign in / Sign up

Export Citation Format

Share Document