An Evolutionary Approach for Question Selection from a Question Bank

Author(s):  
Dimple V. Paul ◽  
Shankar B. Naik ◽  
Jyoti D. Pawar

The success of any educational program depends on its evaluation system. Examinations are a part of learning process which acts as an element in evaluation. For the smooth conduct of examinations of various universities and academic institutions, the question paper generation process would be helpful. However, examination question paper composition is a multi-constraint concurrent optimization problem. Question selection plays a key role in question paper generation systems. Also it is the most significant and time consuming activity. The question selection is handled in traditional question paper generation systems by using a specified question paper format containing a listing of weightages to be allotted to each unit/module of the syllabus. They do not consider other constraints such as total time duration for completion of the paper, total number of questions and the difficulty level of the questions in the question paper etc. In this paper, the authors have modeled the Question Selection Problem as a multi-constraint optimization problem and proposed an Evolutionary Approach for the implementation same. The authors have experimented with this approach on a case study. The results obtained in this case study are interesting and promising to continue its implementation work and further research.

The success of any educational program depends on its evaluation system. Examinations are a part of learning process which acts as an element in evaluation. For the smooth conduct of examinations of various universities and academic institutions, the test paper generation process would be helpful. However, examination test paper composition is a multi-constraint concurrent optimization problem. Question selection plays a key role in test paper generation systems. Also, it is the most significant and time-consuming activity. The question selection is handled in traditional test paper generation systems by using a specified test paper format containing a listing of weightages to be allotted to each unit/module of the syllabus.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yisong Lin ◽  
Xuefeng Wang ◽  
Hao Hu ◽  
Hui Zhao

Abstract By exemplifying the feeder service for the port of Kotka, this study proposed a multi-objective optimization model for feeder network design. Innovative for difference from the single-objective evaluation system, the objective of feeder network design was proposed to include single allocation cost, intra-Europe cargo revenue, equipment balance, sailing cycle, allocation utilization, service route competitiveness, and stability. A three-stage control system was presented, and numerical experiment based on container liner’s real life data was conducted to verify the mathematical model and the control system. The numerical experiment revealed that the three-stage control system is effective and practical, and the research ideas had been applicable with satisfactory effect.


2012 ◽  
Vol 11 (01) ◽  
pp. 27-50 ◽  
Author(s):  
A. J. JEGADHEESON ◽  
L. KARUNAMOORTHY ◽  
N. ARUNKUMAR ◽  
A. BALAJI ◽  
M. RAJKAMAL

Evolution is "understanding and overcoming current constraints in small steps toward optimum." "Understanding" requires elucidation of facts and corroborating theories that can explain those facts in a coherent manner. "Overcoming" requires self-development to suit the environment. In this paper, a case study about how a manufacturing process is improved in terms of productivity and quality using evolutionary improvements is explained. Here "Understanding" is achieved through use of Shainin Technique, PM analysis, Affinity Diagram, and the engineer's ingenuity, along with Relations diagram. "Overcoming" is achieved through Geometrical Analysis and Designed Experiments. The Study has set a new benchmark in the Stator riveting process by proving it can yield the desired results, and the need to adapt welding process is avoided.


Author(s):  
Daniel González-Arribas ◽  
Manuel Soler ◽  
Javier López-Leonés ◽  
Enrique Casado ◽  
Manuel Sanjurjo-Rivo

The future air traffic management system is to be built around the notion of trajectory-based operations. It will rely on automated tools related to trajectory prediction in order to define, share, revise, negotiate and update the trajectory of the aircraft before and during the flight, in some case, in near real time. This paper illustrates how existing standards on trajectory description such as the aircraft intent description language can be enhanced including optimisation capabilities based on numerical optimal control. The Aircraft Intent Description Language is a formal language that has been created in order to describe aircraft intent information in a rigorous, unambiguous and flexible manner. It has been implemented in a platform for a modular design of the trajectory generation process. A case study is presented to explore its effectiveness and identify the requirements and needs to generate optimised aircraft intents with higher automation and flexibility. Preliminary results show the suitability of numerical optimal control to design optimised aircraft intents based on the aircraft intent description language.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jaber Almedeij

This study examines the spatial and temporal variability of monthly total rainfall data obtained from weather stations located in the urban areas of Kuwait. The rainfall data are analyzed by considering statistics on a seasonal basis and by means of periodogram technique to reveal the periods responsible for the variable pattern. The results demonstrate similarity implying that a point estimate of rainfall data can be considered spatially representative over the urban areas of Kuwait. A sinusoidal model triggering the influence of the detected periods is developed accordingly for the time duration from January 1965 to December 2009. The model is capable of describing the rainfall data with some discrepancies between the actual and calculated values resulting from hidden periods that have not been taken into account. This finding suggests that the ability to construct a more reliable model would require a wider range of historical data to detect the other periods affecting the rainfall pattern.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cui Wang ◽  
Zhouhua Guo ◽  
Qingsheng Li ◽  
Jing Fang

AbstractIn order to protect the offshore environment and strengthen the comprehensive rectification of sewage outfalls, an evaluation method of regional sewage outfalls by combining the marine numerical simulation and comprehensive evaluation technology was constructed, considering the marine environmental capacity and the ecological impact of sewage discharge from outfalls on the marine eco-environment sensitive areas. Then the layout rationality of each outfall was evaluated and the discharge scale was optimized with a case study of existing sewage outfalls in Xiamen. The results show that, the comprehensive evaluation score of Yundang outfall was 3 points in 2025, evaluated as the outfall with irrational layout. In 2035, the comprehensive evaluation scores of Fenglin and Dalipu outfalls were 3 and 2 points respectively, evaluated as the outfall with irrational discharge scale. It is suggested to control the scale of expansion or increase the reclaimed water reuse rate in Jimei and Gaoqi Wastewater Treatment Plants. This method has enriched the evaluation system for layout optimization of sewage outfalls, providing scientific supports for comprehensive improvement of sewage outfalls and marine environmental management.


Sign in / Sign up

Export Citation Format

Share Document