Kinematic Isotropic Configuration of Spatial Cable-Driven Parallel Robots

Author(s):  
Hamoon Hadian ◽  
Abbas Fattah

In this paper, the authors study the kinematic isotropic configuration of spatial cable-driven parallel robots by means of four different methods, namely, (i) symbolic method, (ii) geometric workspace, (iii) numerical workspace and global tension index (GTI), and (iv) numerical approach. The authors apply the mentioned techniques to two types of spatial cable-driven parallel manipulators to obtain their isotropic postures. These are a 6-6 cable-suspended parallel robot and a novel restricted three-degree-of-freedom cable-driven parallel robot. Eventually, the results of isotropic conditions of both cable robots are compared to show their applications.

Author(s):  
Hamoon Hadian ◽  
Abbas Fattah

In this paper, the authors study the kinematic isotropic configuration of spatial cable-driven parallel robots by means of four different methods, namely, (i) symbolic method, (ii) geometric workspace, (iii) numerical workspace and global tension index (GTI), and (iv) numerical approach. The authors apply the mentioned techniques to two types of spatial cable-driven parallel manipulators to obtain their isotropic postures. These are a 6-6 cable-suspended parallel robot and a novel restricted three-degree-of-freedom cable-driven parallel robot. Eventually, the results of isotropic conditions of both cable robots are compared to show their applications.


Author(s):  
Tahir Rasheed ◽  
Philip Long ◽  
David Marquez-Gamez ◽  
Stéphane Caro

Mobile Cable-Driven Parallel Robots (MCDPRs) are special type of Reconfigurable Cable Driven Parallel Robots (RCDPRs) with the ability of undergoing an autonomous change in their geometric architecture. MCDPRs consists of a classical Cable-Driven Parallel Robot (CDPR) carried by multiple Mobile Bases (MBs). Generally MCDPRs are kinematically redundant due to the additional mobilities generated by the motion of the MBs. As a consequence, this paper introduces a methodology that aims to determine the best kinematic redundancy scheme of Planar MCDPRs (PMCDPRs) with one degree of kinematic redundancy for pick-and-place operations. This paper also discusses the Static Equilibrium (SE) constraints of the PMCDPR MBs that are needed to be respected during the task. A case study of a PMCDPR with two MBs, four cables and a three degree-of-freedom (DoF) Moving Platform (MP) is considered.


Author(s):  
Coralie Germain ◽  
Sébastien Briot ◽  
Stéphane Caro ◽  
Philippe Wenger

The characterization of the elastodynamic behavior and natural frequencies of parallel robots is a crucial point. Accurate elastodynamic models of parallel robots are useful at both their design and control stages in order to define their optimal dimensions and shapes while improving their vibratory behavior. Several methods exist to write the elastodynamic model of manipulators. However, those methods do not provide a straightforward way to write the Jacobian matrices related to the kinematic constraints of parallel manipulators. Therefore, the subject of this paper is about a systematic method for the determination of the mass and stiffness matrices of any parallel robot in stationary configurations. The proposed method is used to express the mass and stiffness matrices of the Nantes Variable Actuation Robot (NaVARo), a three-degree-of-freedom (3DOF) planar parallel robot with variable actuation schemes, developed at IRCCyN. Then, its natural frequencies are evaluated and compared with those obtained from both Cast3m software and experimentally.


Author(s):  
Martin Hosek ◽  
Michael Valasek ◽  
Jairo Moura

This paper presents single- and dual-end-effector configurations of a planar three-degree of freedom parallel robot arm designed for automated pick-place operations in vacuum cluster tools for semiconductor and flat-panel-display manufacturing applications. The basic single end-effector configuration of the arm consists of a pivoting base platform, two elbow platforms and a wrist platform, which are connected through two symmetric pairs of parallelogram mechanisms. The wrist platform carries an end-effector, the position and angular orientation of which can be controlled independently by three motors located at the base of the robot. The joints and links of the mechanism are arranged in a unique geometric configuration which provides a sufficient range of motion for typical vacuum cluster tools. The geometric properties of the mechanism are further optimized for a given motion path of the robot. In addition to the basic symmetric single end-effector configuration, an asymmetric costeffective version of the mechanism is derived, and two dual-end-effector alternatives for improved throughput performance are described. In contrast to prior attempts to control angular orientation of the end-effector(s) of the conventional arms employed currently in vacuum cluster tools, all of the motors that drive the arm can be located at the stationary base of the robot with no need for joint actuators carried by the arm or complicated belt arrangements running through the arm. As a result, the motors do not contribute to the mass and inertia properties of the moving parts of the arm, no power and signal wires through the arm are necessary, the reliability and maintenance aspects of operation are improved, and the level of undesirable particle generation is reduced. This is particularly beneficial for high-throughput applications in vacuum and particlesensitive environments.


Author(s):  
Clément M. Gosselin ◽  
Jaouad Sefrioui

Abstract In this paper, an algorithm for the determination of the singularity loci of spherical three-degree-of-freedom parallel manipulators with prismatic atuators is presented. These singularity loci, which are obtained as curves or surfaces in the Cartesian space, are of great interest in the context of kinematic design. Indeed, it has been shown elsewhere that parallel manipulators lead to a special type of singularity which is located inside the Cartesian workspace and for which the end-effector becomes uncontrollable. It is therfore important to be able to identify the configurations associated with theses singularities. The algorithm presented is based on analytical expressions of the determinant of a Jacobian matrix, a quantity that is known to vanish in the singular configurations. A general spherical three-degree-of-freedom parallel manipulator with prismatic actuators is first studied. Then, several particular designs are investigated. For each case, an analytical expression of the singularity locus is derived. A graphical representation in the Cartesian space is then obtained.


Author(s):  
Kwun-Lon Ting ◽  
Kuan-Lun Hsu

The paper presents a simple and effective kinematic model and methodology, based on Ting’s N-bar rotatability laws [2629], to assess the extent of the position uncertainty caused by joint clearances for any linkage and manipulators connected with revolute or prismatic pairs. The model is derived and explained with geometric rigor based on Ting’s rotatability laws. The significant contribution includes (1) the clearance link model for P-joint that catches the translation and oscillation characteristics of the slider within the clearance and separates the geometric effect of clearance from the input error, (2) a simple uncertainty linkage model that features a deterministic instantaneous structure mounted on non-deterministic flexible legs, (3) the generality of the method, which is effective for multiloop linkages and parallel manipulators. The discussion is carried out through symmetrically constructed planar eight-bar parallel robots. It is found that the uncertainty region of a three-leg parallel robot is enclosed by a hexagon, while that of its serial counterpart is enclosed by a circle inscribed by the hexagon. A numerical example is also presented. The finding and proof, though only based on three-leg planar 8-bar parallel robots, may have a wider implication suggesting that based on kinematics, parallel robots tends to inherit more position uncertainty than their serial counterparts. The use of more loops in parallel robots cannot fully offset the adverse effect on position uncertainty caused by the use of more joints.


Author(s):  
Dan Zhang ◽  
Fan Zhang

In this paper, we propose a unique, decoupled Three Degree-of-Freedom (DOF) parallel wrist. The condition required for synthesizing a fully isotropic parallel mechanism is obtained based on the physical meaning of the row vector in the Jacobian Matrix. Specifically, an over-constrained spherical 3-DOF parallel mechanism is presented and the modified structure, which avoids the redundant constraints, is also introduced. The proposed manipulator is capable of decoupled rotational motions around the x, y and z axes and contains an output angle that is equal to the input angle. Since this device is analyzed with the Jacobian Matrix, which is constant, the mechanism is free of singularity and maintains homogenous stiffness over the entire workspace.


2016 ◽  
Vol 8 (4) ◽  
Author(s):  
Xiaoling Jiang ◽  
Clément Gosselin

This paper proposes a trajectory generation technique for three degree-of-freedom (3-dof) planar cable-suspended parallel robots. Based on the kinematic and dynamic modeling of the robot, positive constant ratios between cable tensions and cable lengths are assumed. This assumption allows the transformation of the dynamic equations into linear differential equations with constant coefficients for the positioning part, while the orientation equation becomes a pendulum-like differential equation for which accurate solutions can be found in the literature. The integration of the differential equations is shown to yield families of translational trajectories and associated special frequencies. This result generalizes the special cases previously identified in the literature. Combining the results obtained with translational trajectories and rotational trajectories, more general combined motions are analyzed. Examples are given in order to demonstrate the results. Because of the initial assumption on which the proposed method is based, the ratio between cable forces and cable lengths is constant and hence always positive, which ensures that all cables remain under tension. Therefore, the acceleration vector remains in the column space of the Jacobian matrix, which means that the mechanism can smoothly pass through kinematic singularities. The proposed trajectory planning approach can be used to plan dynamic trajectories that extend beyond the static workspace of the mechanism.


Sign in / Sign up

Export Citation Format

Share Document