Popularised Similarity Function for Effective Collaborative Filtering Recommendations

2020 ◽  
Vol 10 (1) ◽  
pp. 34-47
Author(s):  
Abba Almu ◽  
Abubakar Roko ◽  
Aminu Mohammed ◽  
Ibrahim Saidu

The existing similarity functions use the user-item rating matrix to process similar neighbours that can be used to predict ratings to the users. However, the functions highly penalise high popular items which lead to predicting items that may not be of interest to active users due to the punishment function employed. The functions also reduce the chances of selecting less popular items as similar neighbours due to the items with common ratings used. In this article, a popularised similarity function (pop_sim) is proposed to provide effective recommendations to users. The pop_sim function introduces a modified punishment function to minimise the penalty on high popular items. The function also employs a popularity constraint which uses ratings threshold to increase the chances of selecting less popular items as similar neighbours. The experimental studies indicate that the proposed pop_sim is effective in improving the accuracy of the rating prediction in terms of not only lowering the MAE but also the RMSE.

2019 ◽  
Vol 14 (6) ◽  
pp. 480-490 ◽  
Author(s):  
Tuncay Bayrak ◽  
Hasan Oğul

Background: Predicting the value of gene expression in a given condition is a challenging topic in computational systems biology. Only a limited number of studies in this area have provided solutions to predict the expression in a particular pattern, whether or not it can be done effectively. However, the value of expression for the measurement is usually needed for further meta-data analysis. Methods: Because the problem is considered as a regression task where a feature representation of the gene under consideration is fed into a trained model to predict a continuous variable that refers to its exact expression level, we introduced a novel feature representation scheme to support work on such a task based on two-way collaborative filtering. At this point, our main argument is that the expressions of other genes in the current condition are as important as the expression of the current gene in other conditions. For regression analysis, linear regression and a recently popularized method, called Relevance Vector Machine (RVM), are used. Pearson and Spearman correlation coefficients and Root Mean Squared Error are used for evaluation. The effects of regression model type, RVM kernel functions, and parameters have been analysed in our study in a gene expression profiling data comprising a set of prostate cancer samples. Results: According to the findings of this study, in addition to promising results from the experimental studies, integrating data from another disease type, such as colon cancer in our case, can significantly improve the prediction performance of the regression model. Conclusion: The results also showed that the performed new feature representation approach and RVM regression model are promising for many machine learning problems in microarray and high throughput sequencing analysis.


2018 ◽  
Vol 2 (2) ◽  
pp. 81-87 ◽  
Author(s):  
Pushpendra Kumar ◽  
Vinod Kumar ◽  
Ramjeevan Singh Thakur

2012 ◽  
Vol 251 ◽  
pp. 185-190
Author(s):  
Dun Hong Yao ◽  
Xiao Ning Peng ◽  
Jia He

In every field which needs data processing, the sparseness of data is an essential problem that should be resolved, especially in movies, shopping sites. The users with the same commodity preferences makes the data evaluation valuable. Otherwise, without any evaluation of information, it will result in sparse distribution of the entire data obtained. This article introduces a collaborative filtering technology used in sparse data processing methods - project-based rating prediction algorithm, and extends it to the areas of rough set, the sparse information table processing, rough set data preprocessing sparse issues.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Wenming Ma ◽  
Qian Zhang ◽  
Chunxiao Mu ◽  
Meng Zhang

To expand the server capacity and reduce the bandwidth, P2P technologies are widely used in video streaming systems in recent years. Each client in the P2P streaming network should select a group of neighbors by evaluating the QoS of the other nodes. Unfortunately, the size of video streaming P2P network is usually very large, and evaluating the QoS of all the other nodes is resource-consuming. An attractive way is that we can predict the QoS of a node by taking advantage of the past usage experiences of a small number of the other clients who have evaluated this node. Therefore, collaborative filtering (CF) methods could be used for QoS evaluation to select neighbors. However, we might use different QoS properties for different video streaming policies. If a new video steaming policy needs to evaluate a new QoS property, but the historical experiences include very few evaluation data for this QoS property, CF methods would incur severe overfitting issues, and the clients then might get unsatisfied recommendation results. In this paper, we proposed a novel neural collaborative filtering method based on transfer learning, which can evaluate the QoS with few historical data by evaluating the other different QoS properties with rich historical data. We conduct our experiments on a large real-world dataset, the QoS values of which are obtained from 339 clients evaluating on the other 5825 clients. The comprehensive experimental studies show that our approach offers higher prediction accuracy than the traditional collaborative filtering approaches.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 121 ◽  
Author(s):  
Wenchuan Shi ◽  
Liejun Wang ◽  
Jiwei Qin

The collaborative filtering algorithm based on the singular value decomposition plus plus (SVD++) model employs the linear interactions between the latent features of users and items to predict the rating in the recommendation systems. Aiming to further enrich the user model with explicit feedback, this paper proposes a user embedding model for rating prediction in SVD++-based collaborative filtering, named UE-SVD++. We exploit the user potential explicit feedback from the rating data and construct the user embedding matrix by the proposed user-wise mutual information values. In addition, the user embedding matrix is added to the existing user bias and implicit parameters in the SVD++ to increase the accuracy of the user modeling. Through extensive studies on four different datasets, we found that the rating prediction performance of the UE-SVD++ model is improved compared with other models, and the proposed model’s evaluation indicators root-mean-square error (RMSE) and mean absolute error (MAE) are decreased by 1.002–2.110% and 1.182–1.742%, respectively.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 68301-68310 ◽  
Author(s):  
Dionisis Margaris ◽  
Anna Kobusinska ◽  
Dimitris Spiliotopoulos ◽  
Costas Vassilakis

Sign in / Sign up

Export Citation Format

Share Document