CSMCSM

2021 ◽  
Vol 15 (1) ◽  
pp. 44-64
Author(s):  
Hatem Mahmoud Salama ◽  
Mohamed Zaki Abd El Mageed ◽  
Gouda Ismail Mohamed Salama ◽  
Khaled Mahmoud Badran

Many MANET research works are based on the popular informal definition that MANET is a wireless ad-hoc network that has neither infrastructure nor backbone and every network node is autonomous and moves depending on its mobility. Unfortunately, this definition pays no attention to the network servers that are essential in core-based, mission-critical, and military MANETs. In core-based MANETs, external intrusion detection systems (IDS) cannot detect internal Byzantine attacks; in addition, internal Byzantine fault tolerant (BFT) systems are unqualified to detect typical external wireless attack. Therefore, there is a real need to combine both internal and external mobile ad-hoc network (MANET) ID systems. Here, CSMCSM is presented as a two-level client server model for comprehensive security in MANETs that integrates internal and external attack detectors in one device. The internal component is based on a BFT consensus algorithm while the external component employs decision tree to classify the MANET attacks.

Author(s):  
Hicham Zougagh ◽  
Noureddine Idboufker ◽  
Rida Zoubairi ◽  
Rachid El Ayachi

In a mobile ad hoc network, a source node must rely on intermediate nodes to forward its packets along multi-hop routes to the destination node. The performance of a mobile ad hoc network is closely related to the capability of the implemented routing protocol to adapt itself to unpredictable changes of topology network and link status. One of these routing protocols is optimized link state routing protocol which assumes that all nodes are trusted. However, in a hostile environment, the OLSR is known to be vulnerable to various kinds of malicious attacks. Without having any control on packet forwarding, an intermediate node can behave selfishly or maliciously to drop packets going through it. Therefore, in this article, the authors propose a new technique for the selection of multipoint relays whose aims to provide each node the ability to select alternative paths in order to reach any destination two hops away.


Author(s):  
Veeresh Poola ◽  
Praveen Sam R ◽  
Shoba Bindu C

<p><span lang="EN-US">A Due to the rapid development of smart processing mobile devices, Mobile applications are exploring the use of web services in MANETs to satisfy the user needs. Complex user needs are satisfied by the service composition where a complex service is created by combining one or more atomic services. Service composition has a significant challenge in MANETs due to its limited bandwidth, constrained energy sources, dynamic node movement and often suffers from node failures. These constraints increase the failure rate of service composition. To overcome these, we propose Reliable Fault Tolerant System for Service Composition in MANETs (RFTSC) which makes use of the checkpointing technique for service composition in MANETs. We propose fault policies for each fault in service composition when the faults occur. Failure of services in the service composition process is recovered locally by making use of Checkpointing system and by using discovered services which satisfies the QoS constraints. A Multi-Service Tree (MST) is proposed to recover failed services with O(1) time complexity. Simulation result shows that the proposed approach is efficient when compared to existing approaches.</span></p>


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 698 ◽  
Author(s):  
May Thura Lwin ◽  
Jinhyuk Yim ◽  
Young-Bae Ko

As a trending and interesting research topic, in recent years, researchers have been adopting the blockchain in the wireless ad-hoc environment. Owing to its strong characteristics, such as consensus, immutability, finality, and provenance, the blockchain is utilized not only as a secure data storage for critical data but also as a platform that facilitates the trustless exchange of data between independent parties. However, the main challenge of blockchain application in an ad-hoc network is which kind of nodes should be involved in the validation process and how to adopt the heavy computational complexity of block validation appropriately while maintaining the genuine characteristics of a blockchain. In this paper, we propose the blockchain-based trust management system with a lightweight consensus algorithm in a mobile ad-hoc network (MANET). The proposed scheme provides the distributed trust framework for routing nodes in MANETs that is tamper-proof via blockchain. The optimized link state routing protocol (OLSR) is exploited as a representative protocol to embed the blockchain concept in MANETs. As a securely distributed and trusted platform, blockchain solves most of the security issues in the OLSR, in which every node is performing the security operation individually and in a repetitive manner. Additionally, using predefined principles, the routing nodes in the proposed scheme can collaborate to defend themselves from the attackers in the network. The experimental results show that the proposed consensus algorithm is suitable to be used in the resource-hungry MANET with reduced validation time and less overhead. Meanwhile, the attack detection overhead and time also decrease because the repetitivity of the process is reduced while providing a scalable and distributed trust among the routing nodes.


Author(s):  
. Harpal ◽  
Gaurav Tejpal ◽  
Sonal Sharma

In this time of instant units, Mobile Ad-hoc Network(MANET) has become an indivisible part for transmission for mobile devices. Therefore, curiosity about study of Mobile Ad-hoc Network has been growing because last several years. In this report we have mentioned some simple routing protocols in MANET like Destination Sequenced Distance Vector, Active Source Redirecting, Temporally-Ordered Redirecting Algorithm and Ad-hoc On Need Distance Vector. Protection is just a serious problem in MANETs because they are infrastructure-less and autonomous. Principal target of writing this report is to handle some simple problems and security considerations in MANET, operation of wormhole strike and acquiring the well-known routing protocol Ad-hoc On Need Distance Vector. This short article will be a great help for the people performing study on real world problems in MANET security.


Author(s):  
Aarti Sahu ◽  
Laxmi Shrivastava

A wireless ad hoc network is a decentralized kind of wireless network. It is a kind of temporary Computer-to-Computer connection. It is a spontaneous network which includes mobile ad-hoc network (MANET), vehicular ad-hoc network (VANET) and Flying ad-hoc network (FANET). Mobile Ad Hoc Network (MANET) is a temporary network that can be dynamically formed to exchange information by wireless nodes or routers which may be mobile. A VANET is a sub form of MANET. It is an technology that uses vehicles as nodes in a network to make a mobile network. FANET is an ad-hoc network of flying nodes. They can fly independently or can be operated distantly. In this research paper Fuzzy based control approaches in wireless network detects & avoids congestion by developing the ad-hoc fuzzy rules as well as membership functions.In this concept, two parameters have been used as: a) Channel load b) The size of queue within intermediate nodes. These parameters constitute the input to Fuzzy logic controller. The output of Fuzzy logic control (sending rate) derives from the conjunction with Fuzzy Rules Base. The parameter used input channel load, queue length which are produce the sending rate output in fuzzy logic. This fuzzy value has been used to compare the MANET, FANET and VANET in terms of the parameters Throughput, packet loss ratio, end to end delay. The simulation results reveal that usage of Qual Net 6.1 simulator has reduced packet-loss in MANET with comparing of VANET and FANET.


Sign in / Sign up

Export Citation Format

Share Document