Cluster-Based Online Routing Protocols for Ad Hoc Network

Author(s):  
Alaa E. Abdallah ◽  
Mohammad Bsoul ◽  
Emad E. Abdallah ◽  
Ibrahim Al–Oqily ◽  
George Kao

In geographical routing algorithms, mobile nodes rely on geographical position to make routing judgments. Researchers frequently discuss such routing algorithms in (2D) space. However, in reality, mobile nodes spread in (3D) space. In this paper the authors present four new 3D geographical-based routing algorithms Cylinder, Greedy-Cylinder, Cluster-Cylinder, and Greedy-cluster-Cylinder. In Cylinder routing, the nodes are locally projected on the inner surface of a cylinder, perimeter routing is executed after that. Greedy-Cylinder starts with Greedy routing algorithm until a local minimum is reached. The algorithm then switches to Cylinder routing. Cluster-Cylinder elects a dominating set for all nodes and then uses this set for projection and routing. The fourth algorithm Greedy-cluster-Cylinder is a combination between Greedy-Cylinder and Cluster-Cylinder. The authors evaluate their new algorithms and compare them with many classical known algorithms. The simulation outcomes show the substantial enhancement in delivery rate over other algorithms.

Author(s):  
Saad Harous

In this chapter, we will introduce mobile ad hoc networks and issues related to routing data in such networks. Mobile ad hoc networks (MANET) are multi-hop networks made up of mobile nodes cooperating together to maintain the network connectivity. These kinds of network are very useful in situations where a temporary network is needed, such as military area, disaster area, and so on. MANET routing protocols are divided into two categories: proactive (table driven routing) and reactive (on-demand routing) routing. In conventional routing algorithms, if information is to be sent between two nodes, then the shortest path connecting these two nodes is found and used. However this approach does not take into consideration the fact that these devices are battery-operated, so the energy consumed is very important. A number of energy aware algorithms will be presented and their advantages and disadvantages will be discussed in this chapter. Also we will present and discuss the different metrics considered when designing a power aware routing algorithm


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Trung Kien Vu ◽  
Sungoh Kwon

We propose a mobility-assisted on-demand routing algorithm for mobile ad hoc networks in the presence of location errors. Location awareness enables mobile nodes to predict their mobility and enhances routing performance by estimating link duration and selecting reliable routes. However, measured locations intrinsically include errors in measurement. Such errors degrade mobility prediction and have been ignored in previous work. To mitigate the impact of location errors on routing, we propose an on-demand routing algorithm taking into account location errors. To that end, we adopt the Kalman filter to estimate accurate locations and consider route confidence in discovering routes. Via simulations, we compare our algorithm and previous algorithms in various environments. Our proposed mobility prediction is robust to the location errors.


Author(s):  
DWEEPNA GARG ◽  
PARTH GOHIL

A Mobile Ad-Hoc Network (MANET) is a collection of wireless mobile nodes forming a temporary network without using centralized access points, infrastructure, or centralized administration. Routing means the act of moving information across an internet work from a source to a destination. The biggest challenge in this kind of networks is to find a path between the communication end points, what is aggravated through the node mobility. In this paper we present a new routing algorithm for mobile, multi-hop ad-hoc networks. The protocol is based on swarm intelligence. Ant colony algorithms are a subset of swarm intelligence and consider the ability of simple ants to solve complex problems by cooperation. The introduced routing protocol is well adaptive, efficient and scalable. The main goal in the design of the protocol is to reduce the overhead for routing. We refer to the protocol as the Ant Colony Optimization Routing (ACOR).


2018 ◽  
Vol 9 (1) ◽  
pp. 51-65
Author(s):  
Soumen Saha ◽  
Utpal Roy ◽  
D.D. Sinha

Vehicular ad-hoc networks or VANETs are a new method of training an ad-hoc network in traffic. The authors have numbers of routing algorithms on a MANET. But none of them works efficiently in a VANET with respect to being a safe and secure transport system. The authors have proposed a modification on an AODV routing algorithm for VANET with the introduction of the double-ended queue or dqAODV in a request packet header. A comparable good result was found in the throughput. In the present work, the authors introduce a modification of an original AODV by applying a partial re-broadcast of the request packet (RREQ) of an AODV. They found a comparable result in the throughput of the packet delivery aspect for this work with the original algorithm and dqAODV. This is compared to the complexity in the original AODV algorithm.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
HyungJune Lee

We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services.


In today’s worlds, Mobile Ad-Hoc Network (MANET) plays most important role in the field networks technology in the world. The MANET has been rapidly rising and becoming significant from the last decade. A MANET is a kind of wireless network which has been set-up without requirement of fixed infrastructure where mobile nodes are connected over wireless link. Due to moving nature of the devices, the network topology is unstable and will change dynamically. That’s why stable routing in MANET cannot work properly. In this research paper, a new routing algorithm is proposed to get better routing performance in the MANET. The proposed algorithm designed based on the number of neighbors in the network. Planned algorithm is the improvement of GBR-CNR-LN (GBR-CNR with less neighbors) by calculating the stay time between the selected neighbor nodes and the transmission nodes. If the stay time of sender node is more than the packet transmission time then the selected node is the efficient neighbor selection. The algorithm is implemented and results are analyzed. The results of this paper show the usefulness of the proposed algorithm. The Evaluation of AODV protocol was carried out using Python and outcome of this evaluation showed that proposed Algorithm gave better results than GBR-CNR with less neighbor in terms of End-to-End delay, Number of control message transferred(Routing Overhead) and Network Load. The proposed Algorithm (GC-ENS) decrease Average End-to-End delay 52.54 %, reduce Average Routing Overhead 60.54% and decline the Average load on Network 61.17%.


2019 ◽  
Vol 8 (4) ◽  
pp. 12824-12829

A group of mobile nodes using a common wireless media forms a dynamic multihop network known as Mobile Ad-Hoc network (MANET). Creating substructure (cluster) of the mobile adhoc network, basically divides the network into sub network. It has been observed that clustering of large size MANET improves the system performance to a large extent. Clustering allows the MANET to organize it in some hierarchy which reduces control overhead and make it scalable. This paper, gives a new scheme of clustering the MANET that uses the concept of dominating set. The cluster so formed by the proposed method is more stable (less mobile) than the earlier existing algorithms .Here the dominating nodes will be considered as the cluster head of a particular cluster. The non dominating nodes will select the most qualified dominating node as their cluster head and will join the cluster. The quality of the node is measured by its clustering co efficient


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chenguang He ◽  
Guanqiao Qu ◽  
Liang Ye ◽  
Shouming Wei

Recently, the research on the vehicular ad hoc network (VANET) has been paid more attention by researchers with the quick development of the autonomous driving technology. In the VANET, vehicles can communicate with everything through the route established by routing algorithms. However, the topology of the VANET changes fast because the vehicles move fast. Also, as the number of vehicles increases, the probability of data collision and the transmission latency will also increase when communicating. Therefore, the VANET needs a stable, low-latency, and efficient route for vehicles to communicate with each other. However, the existing routing algorithms are either unable to aggregate data or are not suitable for the large-size VANET. In this paper, we consider the vehicle attribute information comprehensively and cluster the vehicles on the road by using the cluster algorithm we propose. We dynamically select the cluster heads at each moment according to their attribute information. We consider all kinds of nodes in the network and the vehicle nodes will communicate with each other through the cluster heads under the two-level communicating algorithm we propose. Compared with the existing cluster routing algorithm, the algorithm we propose is much more suitable for the large-size VANET because the cluster heads do not need a gateway to help them communicate. In the simulation part, we set some real street scenes in Simulation of Urban Mobility (SUMO) and the vehicles can move by the traffic rules like in the real world, which is more suitable for the VANET. After analysing the communication performance in Network Simulator version 2 (NS2), we can get a conclusion that the algorithm proposed is superior to the traditional routing algorithm. The route established by the algorithm we propose is much more stable and efficient. And the latency is also lower than the former.


Author(s):  
Kishor N. Tayade, Et. al.

Vehicular Ad hoc Networks is a promising sub-group of MANET. VANET is deployed on the highways, where the vehicles are mobile nodes. Safety and intelligent transportation are important VANET applications that require appropriate communication among vehicles, in particular routing technology. VANETs generally inherit their common features from MANETs where vehicles operate in a collaborative and dispersed way for promoting contact among vehicles and with network infrastructure like the Road Side Units (RSU) for enhanced traffic experience. In view of the fast growth of Intelligent Transportation Systems (ITS), VANETs has attracted considerable interest in this decade. VANET suffer from a major problem of link failure due to dynamic mobility of vehicles. In this paper we proposed a position based routing algorithm to identify stable path, this will improve the routing by decreasing overhead and interrupting the number of links. Link Expiration Time (LET) is used to provide the stable link, the link with the longest LET is considered as the most stable link. The multicast Ad-hoc On-demand Distance Vector (MAODV) is proposed to avoid the link breakages by using a link with longest LET.  Data loss is reduced by avoiding link breakages and enhance throughput by reducing the communication delay.


Sign in / Sign up

Export Citation Format

Share Document