Strength Optimization of Infant Pop-Up Seat Frame Using Discrete Material and Thickness Optimization

Author(s):  
YeongJo Ju ◽  
Euysik Jeon

In this paper, the authors proposed an optimal design method for the strength design of infant pop-up seat frame combined with rear seats for infants, children, and adults, not removable booster seats or car seats. Frame strength design was performed using discrete material and thickness optimization (DMTO) method considering high strength steel (HSS) and advanced high strength steel (AHSS). Structural design using the Section 4 link mechanism was performed, and the weakness of the seat frame due to static load was confirmed through finite element analysis. An optimal design criterion was established by carrying out a case study to derive the limiting conditions according to static and dynamic loads. In consideration of these criteria, the optimal design according to d-optimal and discrete Latin-hypercube (DLH) was performed among the design of experiments (DOE). And the strength of the pop-up seat frame for infants according to each DOE was checked, and the strength optimization method was suggested by comparing the lightweight ratio.

2011 ◽  
Vol 374-377 ◽  
pp. 2430-2436
Author(s):  
Gang Shi ◽  
Zhao Liu ◽  
Yong Zhang ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

High strength steel sections have been increasingly used in buildings and bridges, and steel angles have also been widely used in many steel structures, especially in transmission towers and long span trusses. However, high strength steel exhibits mechanical properties that are quite different from ordinary strength steel, and hence, the local buckling behavior of steel equal angle members under axial compression varies with the steel strength. However, there is a lack of research on the relationship of the local buckling behavior of steel equal angle members under axial compression with the steel strength. A finite element model is developed in this paper to analyze the local buckling behavior of steel equal angle members under axial compression, and study its relationship with the steel strength and the width-to-thickness ratio of the angle leg. The finite element analysis (FEA) results are compared with the corresponding design method in the American code AISC 360-05, which provides a reference for the related design.


2016 ◽  
Vol 715 ◽  
pp. 174-179 ◽  
Author(s):  
Chih Hsing Liu ◽  
Ying Chia Huang ◽  
Chen Hua Chiu ◽  
Yu Cheng Lai ◽  
Tzu Yang Pai

This paper presents the analysis methods for design of automotive bumper covers. The bumper covers are plastic structures attached to the front and rear ends of an automobile and are expected to absorb energy in a minor collision. One requirement in design of the bumper covers is to minimize the bumper deflection within a limited range under specific loadings at specific locations based on the design guideline. To investigate the stiffness performance under various loading conditions, a numerical model based on the explicit dynamic finite element analysis (FEA) using the commercial FEA solver, LS-DYNA, is developed to analyze the design. The experimental tests are also carried out to verify the numerical model. The thickness of the bumper cover is a design variable which usually varies from 3 to 4 mm depending on locations. To improve the stiffness of the bumper, an optimal design for the bumper under a pre-defined loading condition is identified by using the topology optimization approach, which is an optimal design method to obtain the optimal layout of an initial design domain under specific boundary conditions. The outcome of this study provides an efficient and cost-effective method to predict and improve the design of automotive bumper covers.


Vibration ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 269-289 ◽  
Author(s):  
Javier Naranjo-Pérez ◽  
Javier Jiménez-Manfredi ◽  
Javier Jiménez-Alonso ◽  
Andrés Sáez

Wind action can induce large amplitude vibrations in the stay cables of bridges. To reduce the vibration level of these structural elements, different types of passive damping devices are usually installed. In this paper, a motion-based design method is proposed and implemented in order to achieve the optimum design of different passive damping devices for stay cables under wind action. According to this method, the design problem is transformed into an optimization problem. Thus, its main aim is to minimize the different terms of a multi-objective function, considering as design variables the characteristic parameters of each considered passive damping device. The multi-objective function is defined in terms of the scaled characteristic parameters, one single-function for each parameter, and an additional function that checks the compliance of the considered design criterion. Genetic algorithms are considered as a global optimization method. Three passive damping devices have been studied herein: viscous, elastomeric and friction dampers. As a benchmark structure, the Alamillo bridge (Seville, Spain), is considered in order to validate the performance of the proposed method. Finally, the parameters of the damping devices designed according to this proposal are successfully compared with the results provided by a conventional design method.


2018 ◽  
Vol 941 ◽  
pp. 269-273
Author(s):  
Constant Ramard ◽  
Denis Carron ◽  
Philippe Pilvin ◽  
Florent Bridier

Multipass arc welding is commonly used for thick plates assemblies in shipbuilding. Sever thermal cycles induced by the process generate inhomogeneous plastic deformation and residual stresses. Metallurgical transformations contribute at each pass to the residual stress evolution. Since residual stresses can be detrimental to the performance of the welded product, their estimation is essential and numerical modelling is useful to predict them. Finite element analysis of multipass welding of a high strength steel is achieved with a special emphasis on mechanical and metallurgical effects on residual stress. A welding mock-up was specially designed for experimental measurements of in-depth residual stresses using contour method and deep hole drilling and to provide a simplified case for simulation. The computed results are discussed through a comparison with experimental measurements.


2018 ◽  
Vol 29 (18) ◽  
pp. 3648-3655 ◽  
Author(s):  
Mohammad Mehdi Naserimojarad ◽  
Mehrdad Moallem ◽  
Siamak Arzanpour

Magnetorheological dampers have been used in automotive industry and civil engineering applications for shock and vibration control for some time. While such devices are known to provide reliable shock and vibration suppression, there exist emerging applications in which the magnetorheological dampers have to be optimized in terms of power consumption and overall weight (e.g. energy-efficient electric vehicles). Utilizing traditional optimal design approaches to tackle those issues can sometimes lead to convergence problems such as getting trapped in a local extremum and failing to converge to the global optimum. Furthermore, manufacturing limitations are usually not taken into account in the optimization process which may hamper achieving an optimal design. In this article, we present a method for optimal design of magnetorheological dampers by utilizing mathematical optimization and finite element analysis. The proposed method avoids infeasible solutions by considering physical constraints such as fabrication limitations and tolerances. This approach takes every single feasible solution into account so that the final solution would be the global extremum of the optimization cost function. The proposed approach is applied to optimize a complex magnetorheological damper structure with different types of materials such as steel and AlNiCo. In particular, we present the design of a valve-mode magnetorheological damper with AlNiCo integrated as its core. A magnetorheological damper prototype is manufactured based on the proposed optimization method and tested experimentally.


Sign in / Sign up

Export Citation Format

Share Document