scholarly journals A Novel Sleep Scoring Algorithm-Based Framework and Sleep Pattern Analysis Using Machine Learning Techniques

2021 ◽  
Vol 10 (3) ◽  
pp. 1-20
Author(s):  
Sabyasachi Chakraborty ◽  
Satyabrata Aich ◽  
Hee-Cheol Kim

Maintaining the suited amount of sleep is considered the prime component for maintaining a proper and adequate health condition. Often it has been observed that people having sleep inconsistency tend to jeopardize the health and appeal to many physiological and psychological disorders. To overcome such difficulties, it is often required to keep a requisite note of the duration and quality of sleep that one is having. This work defines an algorithm that can be utilized in smart wearables or mobile phones to perceive the duration of sleep and also to classify a particular instance as slept or awake on the basis of data fetched from the triaxial accelerometer. A comparative analysis was performed based on the results obtained from some previously developed algorithms, rule-based models, and machine learning models, and it was observed that the algorithm developed in the work outperformed the previously developed algorithms. Moreover, the algorithm developed in the work will very much define the scoring of sleep of an individual for maintaining a proper health balance.

Author(s):  
Padmavathi .S ◽  
M. Chidambaram

Text classification has grown into more significant in managing and organizing the text data due to tremendous growth of online information. It does classification of documents in to fixed number of predefined categories. Rule based approach and Machine learning approach are the two ways of text classification. In rule based approach, classification of documents is done based on manually defined rules. In Machine learning based approach, classification rules or classifier are defined automatically using example documents. It has higher recall and quick process. This paper shows an investigation on text classification utilizing different machine learning techniques.


Author(s):  
Feidu Akmel ◽  
Ermiyas Birihanu ◽  
Bahir Siraj

Software systems are any software product or applications that support business domains such as Manufacturing,Aviation, Health care, insurance and so on.Software quality is a means of measuring how software is designed and how well the software conforms to that design. Some of the variables that we are looking for software quality are Correctness, Product quality, Scalability, Completeness and Absence of bugs, However the quality standard that was used from one organization is different from other for this reason it is better to apply the software metrics to measure the quality of software. Attributes that we gathered from source code through software metrics can be an input for software defect predictor. Software defect are an error that are introduced by software developer and stakeholders. Finally, in this study we discovered the application of machine learning on software defect that we gathered from the previous research works.


Work ◽  
2021 ◽  
pp. 1-12
Author(s):  
Zhang Mengqi ◽  
Wang Xi ◽  
V.E. Sathishkumar ◽  
V. Sivakumar

BACKGROUND: Nowadays, the growth of smart cities is enhanced gradually, which collects a lot of information and communication technologies that are used to maximize the quality of services. Even though the intelligent city concept provides a lot of valuable services, security management is still one of the major issues due to shared threats and activities. For overcoming the above problems, smart cities’ security factors should be analyzed continuously to eliminate the unwanted activities that used to enhance the quality of the services. OBJECTIVES: To address the discussed problem, active machine learning techniques are used to predict the quality of services in the smart city manages security-related issues. In this work, a deep reinforcement learning concept is used to learn the features of smart cities; the learning concept understands the entire activities of the smart city. During this energetic city, information is gathered with the help of security robots called cobalt robots. The smart cities related to new incoming features are examined through the use of a modular neural network. RESULTS: The system successfully predicts the unwanted activity in intelligent cities by dividing the collected data into a smaller subset, which reduces the complexity and improves the overall security management process. The efficiency of the system is evaluated using experimental analysis. CONCLUSION: This exploratory study is conducted on the 200 obstacles are placed in the smart city, and the introduced DRL with MDNN approach attains maximum results on security maintains.


2018 ◽  
Vol 27 (03) ◽  
pp. 1850011 ◽  
Author(s):  
Athanasios Tagaris ◽  
Dimitrios Kollias ◽  
Andreas Stafylopatis ◽  
Georgios Tagaris ◽  
Stefanos Kollias

Neurodegenerative disorders, such as Alzheimer’s and Parkinson’s, constitute a major factor in long-term disability and are becoming more and more a serious concern in developed countries. As there are, at present, no effective therapies, early diagnosis along with avoidance of misdiagnosis seem to be critical in ensuring a good quality of life for patients. In this sense, the adoption of computer-aided-diagnosis tools can offer significant assistance to clinicians. In the present paper, we provide in the first place a comprehensive recording of medical examinations relevant to those disorders. Then, a review is conducted concerning the use of Machine Learning techniques in supporting diagnosis of neurodegenerative diseases, with reference to at times used medical datasets. Special attention has been given to the field of Deep Learning. In addition to that, we communicate the launch of a newly created dataset for Parkinson’s disease, containing epidemiological, clinical and imaging data, which will be publicly available to researchers for benchmarking purposes. To assess the potential of the new dataset, an experimental study in Parkinson’s diagnosis is carried out, based on state-of-the-art Deep Neural Network architectures and yielding very promising accuracy results.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jesús Leonardo López-Hernández ◽  
Israel González-Carrasco ◽  
José Luis López-Cuadrado ◽  
Belén Ruiz-Mezcua

Nowadays, the recognition of emotions in people with sensory disabilities still represents a challenge due to the difficulty of generalizing and modeling the set of brain signals. In recent years, the technology that has been used to study a person’s behavior and emotions based on brain signals is the brain–computer interface (BCI). Although previous works have already proposed the classification of emotions in people with sensory disabilities using machine learning techniques, a model of recognition of emotions in people with visual disabilities has not yet been evaluated. Consequently, in this work, the authors present a twofold framework focused on people with visual disabilities. Firstly, auditory stimuli have been used, and a component of acquisition and extraction of brain signals has been defined. Secondly, analysis techniques for the modeling of emotions have been developed, and machine learning models for the classification of emotions have been defined. Based on the results, the algorithm with the best performance in the validation is random forest (RF), with an accuracy of 85 and 88% in the classification for negative and positive emotions, respectively. According to the results, the framework is able to classify positive and negative emotions, but the experimentation performed also shows that the framework performance depends on the number of features in the dataset and the quality of the Electroencephalogram (EEG) signals is a determining factor.


Author(s):  
Christos Floros ◽  
Panagiotis Ballas

Crises around the world reveal a generally unstable environment in the last decades within which banks and financial institutions operate. Risk is an inherent characteristic of financial institutions and is a multifaceted phenomenon. Everyday business practice involves decisions, which requires the use of information regarding various types of threats involved together with an evaluation of their impact on future performance, concluding to combinations of types of risks and projected returns for decision makers to choose from. Moreover, financial institutions process a massive amount of data, collected either internally or externally, in an effort to continuously analyse trends of the economy they operate in and decode global economic conditions. Even though research has been performed in the field of accounting and finance, the authors explore the application of machine learning techniques to facilitate decision making by top management of contemporary financial institutions improving the quality of their accounting disclosure.


Sign in / Sign up

Export Citation Format

Share Document