Graphics Forgery Recognition using Deep Convolutional Neural Network in Video for Trustworthiness

2020 ◽  
Vol 8 (4) ◽  
pp. 78-95
Author(s):  
Neeru Jindal ◽  
Harpreet Kaur

Doctored video generation with easily accessible editing software has proven to be a major problem in maintaining its authenticity. This article is focused on a highly efficient method for the exposure of inter-frame tampering in the videos by means of deep convolutional neural network (DCNN). The proposed algorithm will detect forgery without requiring additional pre-embedded information of the frame. The other significance from pre-existing learning techniques is that the algorithm classifies the forged frames on the basis of the correlation between the frames and the observed abnormalities using DCNN. The decoders used for batch normalization of input improve the training swiftness. Simulation results obtained on REWIND and GRIP video dataset with an average accuracy of 98% shows the superiority of the proposed algorithm as compared to the existing one. The proposed algorithm is capable of detecting the forged content in You Tube compressed video with an accuracy reaching up to 100% for GRIP dataset and 98.99% for REWIND dataset.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2648
Author(s):  
Muhammad Aamir ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Muhammad Zeeshan Azam ◽  
...  

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we propose a multilayered deep convolutional neural network. The proposed model works in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters. The model is tested on 4428 natural images and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%; specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%. The overall accuracy for the whole model is 99.92%, which is competitive and comparable with state-of-the-art algorithms.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jinhua Tian ◽  
Hailun Xie ◽  
Siyuan Hu ◽  
Jia Liu

The increasingly popular application of AI runs the risk of amplifying social bias, such as classifying non-white faces as animals. Recent research has largely attributed this bias to the training data implemented. However, the underlying mechanism is poorly understood; therefore, strategies to rectify the bias are unresolved. Here, we examined a typical deep convolutional neural network (DCNN), VGG-Face, which was trained with a face dataset consisting of more white faces than black and Asian faces. The transfer learning result showed significantly better performance in identifying white faces, similar to the well-known social bias in humans, the other-race effect (ORE). To test whether the effect resulted from the imbalance of face images, we retrained the VGG-Face with a dataset containing more Asian faces, and found a reverse ORE that the newly-trained VGG-Face preferred Asian faces over white faces in identification accuracy. Additionally, when the number of Asian faces and white faces were matched in the dataset, the DCNN did not show any bias. To further examine how imbalanced image input led to the ORE, we performed a representational similarity analysis on VGG-Face's activation. We found that when the dataset contained more white faces, the representation of white faces was more distinct, indexed by smaller in-group similarity and larger representational Euclidean distance. That is, white faces were scattered more sparsely in the representational face space of the VGG-Face than the other faces. Importantly, the distinctiveness of faces was positively correlated with identification accuracy, which explained the ORE observed in the VGG-Face. In summary, our study revealed the mechanism underlying the ORE in DCNNs, which provides a novel approach to studying AI ethics. In addition, the face multidimensional representation theory discovered in humans was also applicable to DCNNs, advocating for future studies to apply more cognitive theories to understand DCNNs' behavior.


2020 ◽  
Vol 10 (10) ◽  
pp. 2421-2429
Author(s):  
Fakhri Alam Khan ◽  
Ateeq Ur Rehman Butt ◽  
Muhammad Asif ◽  
Hanan Aljuaid ◽  
Awais Adnan ◽  
...  

World Health Organization (WHO) manage health-related statistics all around the world by taking the necessary measures. What could be better for health and what may be the leading causes of deaths, all these statistics are well organized by WHO. Burn Injuries are mostly viewed in middle and low-income countries due to lack of resources, the result may come in the form of deaths by serious injuries caused by burning. Due to the non-accessibility of specialists and burn surgeons, simple and basic health care units situated at tribble areas as well as in small cities are facing the problem to diagnose the burn depths accurately. The primary goals and objectives of this research task are to segment the burnt region of skin from the normal skin and to diagnose the burn depths as per the level of burn. The dataset contains the 600 images of burnt patients and has been taken in a real-time environment from the Allied Burn and Reconstructive Surgery Unit (ABRSU) Faisalabad, Pakistan. Burnt human skin segmentation was carried by the use of Otsu's method and the image feature vector was obtained by using statistical calculations such as mean and median. A classifier Deep Convolutional Neural Network based on deep learning was used to classify the burnt human skin as per the level of burn into different depths. Almost 60 percent of images have been taken to train the classifier and the rest of the 40 percent burnt skin images were used to estimate the average accuracy of the classifier. The average accuracy of the DCNN classifier was noted as 83.4 percent and these are the best results yet. By the obtained results of this research task, young physicians and practitioners may be able to diagnose the burn depths and start the proper medication.


2021 ◽  
Vol 24 (68) ◽  
pp. 89-103
Author(s):  
João Batista Pacheco Junior ◽  
Henrique Mariano Costa do Amaral

The design and manual insertion of new terrestrial roads into geographic databases is a frequent activity in geoprocessing and their demand usually occurs as the most up-to-date satellite imagery of the territory is acquired. Continually, new urban and rural occupations emerge, for which specific vector geometries need to be designed to characterize the cartographic inputs and accommodate the relevant associated data. Therefore, it is convenient to develop a computational tool that, with the help of artificial intelligence, automates what is possible in this respect, since manual editing depends on the limits of user agility, and does it in images that are usually easy and free to access. To test the feasibility of this proposal, a database of RGB images containing asphalted urban roads is presented to the K-Means++ algorithm and the SegNet Convolutional Neural Network, and the performance of each was evaluated and compared for accuracy and IoU of road identification. Under the conditions of the experiment, K-Means++ achieved poor and unviable results for use in a real-life application involving tarmac detection in RGB satellite images, with average accuracy ranging from 41.67% to 64.19% and average IoU of 12.30% to 16.16%, depending on the preprocessing strategy used. On the other hand, the SegNet Convolutional Neural Network proved to be appropriate for precision applications not sensitive to discontinuities, achieving an average accuracy of 87.12% and an average IoU of 71.93%.


2020 ◽  
Author(s):  
Jinhua Tian ◽  
Hailun Xie ◽  
Siyuan Hu ◽  
Jia Liu

AbstractThe increasingly popular application of AI runs the risks of amplifying social bias, such as classifying non-white faces to animals. Recent research has attributed the bias largely to data for training. However, the underlying mechanism is little known, and therefore strategies to rectify the bias are unresolved. Here we examined a typical deep convolutional neural network (DCNN), VGG-Face, which was trained with a face dataset consisting of more white faces than black and Asian faces. The transfer learning result showed significantly better performance in identifying white faces, just like the well-known social bias in human, the other-race effect (ORE). To test whether the effect resulted from the imbalance of face images, we retrained the VGG-Face with a dataset containing more Asian faces, and found a reverse ORE that the newly-trained VGG-Face preferred Asian faces over white faces in identification accuracy. In addition, when the number of Asian faces and white faces were matched in the dataset, the DCNN did not show any bias. To further examine how imbalanced image input led to the ORE, we performed the representational similarity analysis on VGG-Face’s activation. We found that when the dataset contained more white faces, the representation of white faces was more distinct, indexed by smaller ingroup similarity and larger representational Euclidean distance. That is, white faces were scattered more sparsely in the representational face space of the VGG-Face than the other faces. Importantly, the distinctiveness of faces was positively correlated with the identification accuracy, which explained the ORE observed in the VGG-Face. In sum, our study revealed the mechanism underlying the ORE in DCNNs, which provides a novel approach of study AI ethics. In addition, the face multidimensional representation theory discovered in human was found also applicable to DCNNs, advocating future studies to apply more cognitive theories to understand DCNN’s behavior.


2019 ◽  
Vol 11 (15) ◽  
pp. 1774 ◽  
Author(s):  
Yaning Yi ◽  
Zhijie Zhang ◽  
Wanchang Zhang ◽  
Chuanrong Zhang ◽  
Weidong Li ◽  
...  

Urban building segmentation is a prevalent research domain for very high resolution (VHR) remote sensing; however, various appearances and complicated background of VHR remote sensing imagery make accurate semantic segmentation of urban buildings a challenge in relevant applications. Following the basic architecture of U-Net, an end-to-end deep convolutional neural network (denoted as DeepResUnet) was proposed, which can effectively perform urban building segmentation at pixel scale from VHR imagery and generate accurate segmentation results. The method contains two sub-networks: One is a cascade down-sampling network for extracting feature maps of buildings from the VHR image, and the other is an up-sampling network for reconstructing those extracted feature maps back to the same size of the input VHR image. The deep residual learning approach was adopted to facilitate training in order to alleviate the degradation problem that often occurred in the model training process. The proposed DeepResUnet was tested with aerial images with a spatial resolution of 0.075 m and was compared in performance under the exact same conditions with six other state-of-the-art networks—FCN-8s, SegNet, DeconvNet, U-Net, ResUNet and DeepUNet. Results of extensive experiments indicated that the proposed DeepResUnet outperformed the other six existing networks in semantic segmentation of urban buildings in terms of visual and quantitative evaluation, especially in labeling irregular-shape and small-size buildings with higher accuracy and entirety. Compared with the U-Net, the F1 score, Kappa coefficient and overall accuracy of DeepResUnet were improved by 3.52%, 4.67% and 1.72%, respectively. Moreover, the proposed DeepResUnet required much fewer parameters than the U-Net, highlighting its significant improvement among U-Net applications. Nevertheless, the inference time of DeepResUnet is slightly longer than that of the U-Net, which is subject to further improvement.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Ying Ren ◽  
Yu He ◽  
Linghua Cong

Objective. To investigate the application value of a deep convolutional neural network (CNN) model for cytological assessment of thyroid nodules. Methods. 117 patients with thyroid nodules who underwent thyroid cytology examination in the Affiliated People’s Hospital of Ningbo University between January 2017 and December 2019 were included in this study. 100 papillary thyroid cancer samples and 100 nonmalignant samples were collected respectively. The sample images were translated vertically and horizontally. Thus, 900 images were separately created in the vertical and horizontal directions. The sample images were randomly divided into training samples (n = 1260) and test samples (n = 540) at the ratio of 7 : 3 per the training sample to test sample. According to the training samples, the pretrained deep convolutional neural network architecture Resnet50 was trained and fine-tuned. A convolutional neural network-based computer-aided detection (CNN-CAD) system was constructed to perform full-length scan of the test sample slices. The ability of CNN-CAD to screen malignant tumors was analyzed using the threshold setting method. Eighty pathological images were collected from patients who received treatment between January 2020 and May 2020 and used to verify the value of CNN in the screening of malignant thyroid nodules as verification set. Results. With the number of iterations increasing, the training and verification loss of CNN model gradually decreased and tended to be stable, and the training and verification accuracy of CNN model gradually increased and tended to be stable. The average loss rate of training samples determined by the CNN model was (22.35 ± 0.62) %, and the average loss rate of test samples determined by the CNN model was (26.41 ± 3.37) %. The average accuracy rate of training samples determined by the CNN model was (91.04 ± 2.11) %, and the average accuracy rate of test samples determined by the CNN model was (91.26 ± 1.02)%. Conclusion. A CNN model exhibits a high value in the cytological diagnosis of thyroid diseases which can be used for the cytological diagnosis of malignant thyroid tumor in the clinic.


Proceedings ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 17 ◽  
Author(s):  
Calimanut-Ionut Cira ◽  
Ramón Alcarria ◽  
Miguel-Ángel Manso-Callejo ◽  
Francisco Serradilla

This paper tackles the problem of object recognition in high-resolution aerial imagery and addresses the application of Deep Learning techniques to solve a challenge related to detecting the existence of geospatial elements (road network) in the available cartographic support. This challenge is addressed by building a convolutional neural network (CNN) trained to detect roads in high resolution aerial orthophotos divided in tiles (256 × 256 pixels) using manually labelled data.


Sign in / Sign up

Export Citation Format

Share Document