Antenna Design and Direction of Arrival Estimation in Meta-Heuristic Paradigm

Author(s):  
Nilanjan Dey ◽  
Amira S. Ashour

Antennas are considered as a significant component in any wireless system. There are numerous factors and constraints that affect its design. Therefore, recently several algorithms are developed to allow the designers optimize the antenna with respect to numerous different criteria, general constraints and the desired performance characteristics. In recent years there has been an increasing attention to some novel evolutionary techniques, such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Bacteria-Foraging (BF), Biogeography Based Optimization (BBO), and Differential Evolution (DE) that used for antenna optimization. The current study discussed three popular population-based meta-heuristic algorithms for optimal antenna design and direction of arrival estimation. Basically, single and multi-objective population-based meta-heuristic algorithms are included. Besides hybrid methods are highlighted. This paper reviews antenna array design optimization as well as direction of arrival optimization problem for different antennas configurations.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Sotirios K. Goudos ◽  
John N. Sahalos

Array thinning is a common discrete-valued combinatorial optimization problem. Evolutionary algorithms are suitable techniques for above-mentioned problem. Biogeography-Based Optimization (BBO), which is inspired by the science of biogeography, is a stochastic population-based evolutionary algorithm (EA). The original BBO uses a linear migration model to describe how species migrate from one island to another. Other nonlinear migration models have been proposed in the literature. In this paper, we apply BBO with four different migration models to five different large array design cases. Additionally we compare results with five other popular algorithms. The problems dimensions range from 150 to 300. The results show that BBO with sinusoidal migration model generally performs better than the other algorithms. However, these results are considered to be indicative and do not generally apply to all optimization problems in antenna design.


Author(s):  
Nazmul Siddique ◽  
Hojjat Adeli

In the past three decades nature-inspired and meta-heuristic algorithms have dominated the literature in the broad areas of search and optimization. Harmony search algorithm (HSA) is a music-inspired population-based meta-heuristic search and optimization algorithm. The concept behind the algorithm is to find a perfect state of harmony determined by aesthetic estimation. This paper starts with an overview of the harmonic phenomenon in music and music improvisation used by musicians and how it is applied to the optimization problem. The concept of harmony memory and its mathematical implementation are introduced. A review of HSA and its variants is presented. Guidelines from the literature on the choice of parameters used in HSA for effective solution of optimization problems are summarized.


2019 ◽  
Vol 2 (3) ◽  
pp. 508-517
Author(s):  
FerdaNur Arıcı ◽  
Ersin Kaya

Optimization is a process to search the most suitable solution for a problem within an acceptable time interval. The algorithms that solve the optimization problems are called as optimization algorithms. In the literature, there are many optimization algorithms with different characteristics. The optimization algorithms can exhibit different behaviors depending on the size, characteristics and complexity of the optimization problem. In this study, six well-known population based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA and particle swarm optimization - PSO) were used. These six algorithms were performed on the CEC’17 test functions. According to the experimental results, the algorithms were compared and performances of the algorithms were evaluated.


2013 ◽  
Vol E96.B (2) ◽  
pp. 553-560
Author(s):  
Tomoyuki KITADA ◽  
Jun CHENG ◽  
Yoichiro WATANABE

2015 ◽  
Vol 23 (04) ◽  
pp. 1540007 ◽  
Author(s):  
Guolong Liang ◽  
Wenbin Zhao ◽  
Zhan Fan

Direction of arrival (DOA) estimation is of great interest due to its wide applications in sonar, radar and many other areas. However, the near-field interference is always presented in the received data, which may result in degradation of DOA estimation. An approach which can suppress the near-field interference and preserve the far-field signal desired by using a spatial matrix filter is proposed in this paper and some typical DOA estimation algorithms are adjusted to match the filtered data. Simulation results show that the approach can improve capability of DOA estimation under near-field inference efficiently.


Sign in / Sign up

Export Citation Format

Share Document