Biosensor Based on Giant Magnetoresistance Material

Author(s):  
Mitra Djamal

In recent years, giant magnetoresistance (GMR) sensors have shown a great potential as sensing elements for biomolecule detection. The resistance of a GMR sensor changes with the magnetic field applied to the sensor, so that a magnetically labeled biomolecule can induce a signal. Compared with the traditional optical detection that is widely used in biomedicine, GMR sensors are more sensitive, portable, and give a fully electronic readout. In addition, GMR sensors are inexpensive and the fabrication is compatible with the current VLSI (Very Large Scale Integration) technology. In this regard, GMR sensors can be easily integrated with electronics and microfluidics to detect many different analytes on a single chip. In this article, the authors demonstrate a comprehensive review on a novel approach in biosensors based on GMR material.

Author(s):  
Mitra Djamal ◽  
Ramli ◽  
Yulkifli ◽  
Suprijadi ◽  
Khairurrijal

In recent years, giant magnetoresistance (GMR) sensors have shown a great potential as sensing elements for biomolecule detection. The resistance of a GMR sensor changes with the magnetic field applied to the sensor, so that a magnetically labeled biomolecule can induce a signal. Compared with the traditional optical detection that is widely used in biomedicine, GMR sensors are more sensitive, portable, and give a fully electronic readout. In addition, GMR sensors are inexpensive and the fabrication is compatible with the current VLSI (Very Large Scale Integration) technology. In this regard, GMR sensors can be easily integrated with electronics and microfluidics to detect many different analytes on a single chip. In this article, the authors demonstrate a comprehensive review on a novel approach in biosensors based on GMR material.


Author(s):  
Yukihiro Nakagawa ◽  
Takeshi Shimizu ◽  
Takeshi Horie ◽  
Yoichi Koyanagi ◽  
Osamu Shiraki ◽  
...  

The use of virtualization technology has been increasing in the IT industry to consolidate servers and reduce power consumption significantly. Virtualized commodity servers are scaled out in the data center and increase the demand for bandwidth between servers. Therefore, a high performance switch is required. The shared-memory switch is the best performance/cost switch architecture, but it is challenging to satisfy the requirements on the memory bandwidth in a high speed network. In addition, it is challenging to handle variable-length frames in Ethernet. This chapter describes the main challenges in Ethernet switch designs and then energy-aware switch designs, including switch architecture and high speed IO interface. As implementation examples, this chapter also describes a single-chip switch Large Scale Integration (LSI) embedded with high-speed IO interfaces and 10-Gigabit Ethernet (10GbE) switch blade equipped with the switch LSI. The switch blade delivers 100% more performance per watt than other 10GbE switch blades in the industry.


Author(s):  
E. Garda ◽  
M. Guzmán ◽  
D. Torres

This paper presents a VLSI (Very Large Scale Integration) implementation of high punctured convolutional codes.We present a new circuit architecture that is capable of processing up to 10 convolutional codes rate (n-1)/n withthe constraint length-7 derived by the puncturing technique from the basic rate-1/2. The present circuit wasdesigned in order to complete an existing Viterbi decoder core, adding some extra functionality such as aconvolutional encoder, differential encoder/decoder, punctured convolutional encoder and symbol insertion todepuncture the received data. This extra functionality includes 10 different programmable coding rates without theneed to add additional logic in the system implementation, while other existing coders need it to attain highercoding rates. Therefore, a single chip solution is presented. The design was implemented in VHDL (Very High SpeedIntegrated Circuit Hardware Description Language) synthesized in Synopsys tool, and tested in a FPGA. Functionalverification was done, by means of simulation, to ensure that the circuit implements intended functionality. Suchsimulations were executed using Synopsys and a Sun Ultra Sparc 10 workstation. Different bit error probabilityperformance curves show an agreement between simulated and theoretical values.


Very large scale integration is a process of integrating hundreds of thousands of transistors or devices into a single chip. VLSI can be categorized into two fields Frontend and Backend. Digital VLSI design falls under the Frontend design. Multiplication is an arithmetic operation important for the Digital Signal Processing (DSP) and for processors. Multiplier is the main hardware block for the digital circuit. More than 70% of the applications in a digital circuit are either addition or multiplication. As these operations dominates most of the execution time so we need fast multipliers. The overall objective of a good multiplier is to have high speed, low power consumption unit, less area. Vedic multipliers are the fast multipliers and occupy less area. They are based on the Vedic mathematics sutra "Urdhava-Triyakbhyam" . The paper contain a high speed multipliers and use of different adder structures.


2014 ◽  
Vol 155 (26) ◽  
pp. 1011-1018 ◽  
Author(s):  
György Végvári ◽  
Edina Vidéki

Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy beween organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants’ life. Orv. Hetil., 2014, 155(26), 1011–1018.


Sign in / Sign up

Export Citation Format

Share Document