A Projection of the Future Effects of Quantum Computation on Information Privacy

2007 ◽  
Vol 1 (3) ◽  
pp. 1-12 ◽  
Author(s):  
Geoff Skinner ◽  
Elizabeth Chang
Author(s):  
Geoff Skinner ◽  
Elizabeth Chang

Many of the current issues with Information Privacy have been the result of inadequate consideration for privacy during the planning, design and implementation of Information Systems and communication networks. The area of Quantum Computation is still in its infancy, and a truly functional quantum computer has not been implemented. However, it is anticipated that within the next decade it may be feasible. This presents a unique opportunity to give due consideration to Information Privacy in the realm of future quantum computational devices and environments while they are still in their infancy. This chapter provides an overview of the key Information Privacy issues that the authors feel may arise with the evolution and realization of quantum computation. Additionally they propose an integrated approach of technical, legal and social elements to address these issues.


Physics ◽  
2014 ◽  
Vol 7 ◽  
Author(s):  
Peter van Loock

2021 ◽  
Vol 11 (23) ◽  
pp. 11272
Author(s):  
Nicolás Lori ◽  
José Neves ◽  
José Machado

Recently, from the deduction of the result MIP* = RE in quantum computation, it was obtained that Quantum Field Theory (QFT) allows for different forms of computation in quantum computers that Quantum Mechanics (QM) does not allow. Thus, there must exist forms of computation in the QFT representation of the Universe that the QM representation does not allow. We explain in a simple manner how the QFT representation allows for different forms of computation by describing the differences between QFT and QM, and obtain why the future of quantum computation will require the use of QFT.


1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).


1978 ◽  
Vol 48 ◽  
pp. 387-388
Author(s):  
A. R. Klemola
Keyword(s):  

Second-epoch photographs have now been obtained for nearly 850 of the 1246 fields of the proper motion program with centers at declination -20° and northwards. For the sky at 0° and northward only 130 fields remain to be taken in the next year or two. The 270 southern fields with centers at -5° to -20° remain for the future.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Author(s):  
Nicholas J Severs

In his pioneering demonstration of the potential of freeze-etching in biological systems, Russell Steere assessed the future promise and limitations of the technique with remarkable foresight. Item 2 in his list of inherent difficulties as they then stood stated “The chemical nature of the objects seen in the replica cannot be determined”. This defined a major goal for practitioners of freeze-fracture which, for more than a decade, seemed unattainable. It was not until the introduction of the label-fracture-etch technique in the early 1970s that the mould was broken, and not until the following decade that the full scope of modern freeze-fracture cytochemistry took shape. The culmination of these developments in the 1990s now equips the researcher with a set of effective techniques for routine application in cell and membrane biology.Freeze-fracture cytochemical techniques are all designed to provide information on the chemical nature of structural components revealed by freeze-fracture, but differ in how this is achieved, in precisely what type of information is obtained, and in which types of specimen can be studied.


Sign in / Sign up

Export Citation Format

Share Document