The Mechanism Investigation on Propagation and Coalescence Pattern of Three Internal Plane Flaws in Brittle Materials

Author(s):  
Yan Shuang Guo ◽  
Wei Shen Zhu ◽  
R.H.C. Wong ◽  
Shu Cai Li ◽  
Chun Jin Lin
2006 ◽  
Vol 324-325 ◽  
pp. 739-742 ◽  
Author(s):  
Yan Shuang Guo ◽  
Wei Shen Zhu ◽  
R.H.C. Wong ◽  
Shu Cai Li ◽  
Chun Jin Lin

Under the action of compressive load, the growth and coalescence containing flaws in brittle materials (rock and rocklike materials e.g.) will result in the local buckling and global fracture of rockmass. But, the mechanisms on propagation and coalescence of 3-dimensional internal flaws are not clear till now. We examine brittle fractures of manmade specimens using frozen casting resin and rocklike material to observe 3D internal flaws growth process at about -30° C. A team of specimens containing three internal flaws is measured; flaws are made of three parallel oblong aluminum films. The propagation and coalescence pattern of three internal flaws is observed under compressive stress. An interesting phenomenon is that the crack initiated from the second flaw quickly turns to the one induced from the third flaw and forms a bigger fracture plane, then splits the specimen. It shows that the flaw distribution pattern will greatly affect the flaws growth and coalescence process. The mechanisms that lead to the wing and anti-wing crack initiation and coalescence are described.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-811-Pr9-816 ◽  
Author(s):  
O. A. Plekhov ◽  
D. N. Eremeev ◽  
O. B. Naimark

1984 ◽  
Author(s):  
S. M. Wiederhorn ◽  
N. J. Tighe ◽  
T. J. Chuang ◽  
K. A. Hardman-Rhyne ◽  
B. J. Hockey

2005 ◽  
Author(s):  
Michael A. Grinfeld ◽  
Scott E. Schoenfeld ◽  
Tim W. Wright

1975 ◽  
Author(s):  
Arthur F. McLean ◽  
Eugene A. Fisher ◽  
Raymond J. Bratton ◽  
Donald G. Miller

Sign in / Sign up

Export Citation Format

Share Document