Solid Shell Element and its Application in Roll Forming Simulation

Author(s):  
Da Yong Li ◽  
Ying Bing Luo ◽  
Ying Hong Peng
2007 ◽  
Vol 340-341 ◽  
pp. 347-352 ◽  
Author(s):  
Da Yong Li ◽  
Ying Bing Luo ◽  
Ying Hong Peng

Solid shell element models which possess only translational degrees of freedom and are applicable to thin structure analyses has drawn much attention in recent years and presented good prospect in sheet metal forming. In this study, a solid shell element model is introduced into the dynamic explicit elastic-plastic finite element method. The plane stress constitutive relation is assumed to relieve the thickness locking and the selected reduced integration method is used to overcome volumetric locking. The assumed natural strain method is adopted to resolve shear locking and trapezoidal locking problem. Two benchmark examples and a stage of roll forming process are calculated, and the calculating results are compared with those by solid element model, which demonstrates the effectiveness of the element.


2021 ◽  
Author(s):  
Bastian Schäfer ◽  
Dominik Dörr ◽  
Luise Kärger

Finite element (FE) forming simulation offers the possibility of a detailed analysis of the deformation behaviour of engineering textiles during forming processes, to predict possible manufacturing effects such as wrinkling or local changes in fibre volume content. The majority of macroscopic simulations are based on conventional two-dimensional shell elements with large aspect ratios to model the membrane and bending behaviour of thin fabrics efficiently. However, a three-dimensional element approach is necessary to account for stresses and strains in thickness direction accurately, which is required for processes with a significant influence of the fabric’s compaction behaviour, e.g. wet compression moulding. Conventional linear 3D-solid elements that would be commercially available for this purpose are rarely suitable for high aspect ratio forming simulations. They are often subjected to several locking phenomena under bending deformation, which leads to a strong dependence of the element formulation on the forming behaviour [1]. Therefore, in the present work a 3D hexahedral solid-shell element, based on the initial work of Schwarze and Reese [2,3], which has shown promising results for the forming of thin isotropic materials [1], is extended for highly anisotropic materials. The advantages of a locking-free element formulation are shown through a comparison to commercially available solid and shell elements in forming simulations of a generic geometry. Additionally, first ideas for an approach of a membrane-bending-decoupling based on a Taylor approximation of the strain are discussed, which is necessary for an accurate description of the deformation behaviour of thin fabrics.


2011 ◽  
Vol 473 ◽  
pp. 564-571 ◽  
Author(s):  
Romain Boman ◽  
Jean Philippe Ponthot

Due to the length of the mill, accurate modelling of stationary solution of continuous cold roll forming by the finite element method using the classical Lagrangian formulation usually requires a very large mesh leading to huge CPU times. In order to model industrial forming lines including many tools in a reasonable time, the sheet has to be shortened or the element size has to be increased leading to inaccurate results. On top of this, applying loads and boundary conditions on this smaller sheet is usually more difficult than in the continuous case. Moreover, transient dynamic vibrations, which are unnecessarily computed, may appear when the sheet hits each tool, decreasing the convergence rate of the numerical simulation. Beside this classical Lagrangian approach, an alternative method is given by the Arbitrary Lagrangian Eulerian (ALE) formalism which consists in decoupling the motion of the material and the mesh. Starting from an initial guess of the sheet geometry between the rolls, the numerical simulation is performed until the stationary state is reached with a mesh, the nodes of which are fixed in the rolling direction but are free to move on perpendicular plane, following the geometrical boundary of the sheet. The whole forming line can then be modelled using a limited number of brick and contact elements because the mesh is only refined near the tools where bending and contact occur. In this paper, ALE results are compared to previous Lagrangian simulations and experimental measurement on a U-channel, including springback. Advantages of the ALE method are finally demonstrated by the simulation of a tubular rocker panel on a 16-stands forming mill.


1997 ◽  
Author(s):  
Chahngmin Cho ◽  
Brian Kemp ◽  
Sung Lee ◽  
Chahngmin Cho ◽  
Brian Kemp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document