The Bone Remodeling and Cellular Responses to Cranial Suture Distraction Osteogenesis in Growing Goats

Author(s):  
Qi Feng Zhang ◽  
Shu Juan Zou ◽  
Hai Xiao Zhou ◽  
Yang Xi Chen ◽  
Meng Chun Qi ◽  
...  
2007 ◽  
Vol 342-343 ◽  
pp. 5-8
Author(s):  
Qi Feng Zhang ◽  
Shu Juan Zou ◽  
Hai Xiao Zhou ◽  
Yang Xi Chen ◽  
Meng Chun Qi ◽  
...  

The purpose of the present study was to observe the response and changes of cranial suture to the distraction forces in growing goats and to examine the expression patterns of TGF-β and BMP during suture distraction.Twenty growing goats were divided into three groups: control (n=4), experimental (n=12), and sham (n=4). A pure titanium distractor was placed in the coronal suture in both the sham and experimental groups. After healing, the distractor was activated for distraction of the coronal suture at a rate of 0.5 mm/day for 8 days in the experimental group. Three animals were killed respectively, at 0,2,4 and 8 weeks after completion of suture distraction. No force was applied in the sham group. X- Ray examination was taken and the coronal suture samples were harvested and processed for histological analysis and scanning electron microscopic analysis and immunohistochemistry of TGF-β and BMP. The coronal sutures of experimental group were separated successfully. Signs of intramembranous bone formation and remodeling were found in the distracted suture,and the sutural structure almost return to its normal state at 8 weeks after end of distraction. At 0 and 2 weeks after completion of suture distraction, the collagen fiber bundles were strengthened and aligned in the direction of the distracted forces. Strong expression of BMP and TGF-β were detected in the fibroblast-like cells and the active osteoblasts. At 4 weeks after suture distraction, signs of intramembranous ossification were found in the edge areas of the distracted suture, and the positive staining of BMP and TGF-β was still noted in the osteoblasts around the newly formed bone trabeculae. This study suggests that cranial suture expansion can be achieved in growing animal by distraction osteogenesis. Mechanical strain resulted from distractor can induce the adaptive remodeling in the cranial suture of growing goats. It also suggests BMP and TGF-β may play very important roles in the process of bone formation and remodeling during suture distraction osteogenesis.


1999 ◽  
Vol 103 (2) ◽  
pp. 362-370 ◽  
Author(s):  
Thomas H. Tung ◽  
Bradley R. Robertson ◽  
Jonathan M. Winograd ◽  
Tarun Mullick ◽  
Paul N. Manson

2006 ◽  
Vol 24 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Chun Wai Chan ◽  
Ling Qin ◽  
Kwong Man Lee ◽  
Ming Zhang ◽  
Jack Chun Yiu Cheng ◽  
...  

1999 ◽  
Vol 103 (3) ◽  
pp. 800-807 ◽  
Author(s):  
Ulrich Meyer ◽  
Hans Peter Wiesmann ◽  
Birgit Kruse-Lösler ◽  
Jörg Handschel ◽  
Udo Stratmann ◽  
...  

1999 ◽  
Vol 36 (5) ◽  
pp. 377-387 ◽  
Author(s):  
Babak J. Mehrara ◽  
Michael T. Longaker

The recent explosion in our understanding of developmental biology and genetics has enhanced our understanding of craniofacial biology. While it is not possible to summarize all new developments in craniofacial research, this article will review three areas: fetal models and surgery for craniofacial disorders, the biology of distraction osteogenesis, and the molecular mechanisms of cranial suture fusion. Numerous models of craniofacial disorders have been described, including small, short gestation and large, long gestation. The benefits and shortcomings of each are discussed. In addition, we discuss recent studies investigating the molecular mechanisms of mandibular distraction osteogenesis. Finally, we present a review of recent advances in the understanding of mechanisms of craniosynostosis, with particular emphasis on the biology of programmed cranial suture fusion in rodents.


2021 ◽  
Vol 4 (2) ◽  
pp. V15
Author(s):  
Phuong D. Nguyen ◽  
Ahmed Belal ◽  
George N. Washington ◽  
Matthew R. Greives ◽  
David I. Sandberg ◽  
...  

Unicoronal craniosynostosis correction with fronto-orbital advancement and cranial vault remodeling has traditionally been the gold standard. Distraction osteogenesis has the advantage of increased size of movement without constriction of the scalp and decreased morbidity. Although fronto-orbital advancement and cranial vault remodeling are usually performed at 6 months of age or later, distraction osteogenesis is performed at a younger age, between 3 and 6 months, to take advantage of the infant bony physiology. Herein, the authors demonstrate a case of distraction osteogenesis for unicoronal craniosynostosis in a 3-month-old female with significant improvement of her orbital, nasal, and frontal symmetry. The video can be found here: https://vimeo.com/519047922


Author(s):  
D. E. Philpott ◽  
W. Sapp ◽  
C. Williams ◽  
Joann Stevenson ◽  
S. Black

The response of spermatogonial cells to X-irradiation is well documented. It has been shown that there is a radiation resistent stem cell (As) which, after irradiation, replenishes the seminiferous epithelium. Most investigations in this area have dealt with radiation dosages of 100R or more. This study was undertaken to observe cellular responses at doses less than 100R of X-irradiation utilizing a system in which the tissue can be used for light and electron microscopy.Brown B6D2F1 mice aged 16 weeks were exposed to X-irradiation (225KeV; 15mA; filter 0.35 Cu; 50-60 R/min). Four mice were irradiated at each dose level between 1 and 100 rads. Testes were removed 3 days post-irradiation, fixed, and embedded. Sections were cut at 2 microns for light microscopy. After staining, surviving spermatogonia were identified and counted in tubule cross sections. The surviving fraction of spermatogonia compared to control, S/S0, was plotted against dose to give the curve shown in Fig. 1.


2020 ◽  
Vol 5 (6) ◽  
pp. 1469-1481 ◽  
Author(s):  
Joseph A. Napoli ◽  
Carrie E. Zimmerman ◽  
Linda D. Vallino

Purpose Craniofacial anomalies (CFA) often result in growth abnormalities of the facial skeleton adversely affecting function and appearance. The functional problems caused by the structural anomalies include upper airway obstruction, speech abnormalities, feeding difficulty, hearing deficits, dental/occlusal defects, and cognitive and psychosocial impairment. Managing disorders of the craniofacial skeleton has been improved by the technique known as distraction osteogenesis (DO). In DO, new bone growth is stimulated allowing bones to be lengthened without need for bone graft. The purpose of this clinical focus article is to describe the technique and clinical applications and outcomes of DO in CFA. Conclusion Distraction can be applied to various regions of the craniofacial skeleton to correct structure and function. The benefits of this procedure include improved airway, feeding, occlusion, speech, and appearance, resulting in a better quality of life for patients with CFA.


2001 ◽  
Vol 120 (5) ◽  
pp. A314-A314
Author(s):  
K HADERSLEV ◽  
P JEPPESEN ◽  
B HARTMANN ◽  
J THULESEN ◽  
J GRAFF ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document