Microstructure Control of Porous Alumina Film Using Aqueous Sol Containing Trehalose

Author(s):  
Takeshi Miki ◽  
Kaori Nishizawa ◽  
Kazuyuki Suzuki ◽  
Kazumi Kato
2007 ◽  
Vol 21 (1-4) ◽  
pp. 524-527 ◽  
Author(s):  
Takeshi Miki ◽  
Kaori Nishizawa ◽  
Kazuyuki Suzuki ◽  
Kazumi Kato

Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 575 ◽  
Author(s):  
Xuwen Liu ◽  
Yan Hu ◽  
Hai Wei ◽  
Bingwen Chen ◽  
Yinghua Ye ◽  
...  

Since copper azide (Cu(N3)2) has high electrostatic sensitivity and is difficult to be practically applied, silicon-based Cu(N3)2@carbon nanotubes (CNTs) composite energetic films with higher electrostatic safety were fabricated, which can be compatible with micro-electro mechanical systems (MEMS). First, a silicon-based porous alumina film was prepared by a modified two-step anodic oxidation method. Next, CNTs were grown in pores of the silicon-based porous alumina film by chemical vapor deposition. Then, copper nanoparticles were deposited in CNTs by electrochemical deposition and oxidized to Cu(N3)2 by gaseous hydrogen azide. The morphology and composition of the prepared silicon-based Cu(N3)2@CNTs energetic films were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. The electrostatic sensitivity of the composite energetic film was tested by the Bruceton method. The thermal decomposition kinetics of the composite energetic films were studied by differential scanning calorimetry (DSC). The results show that the exothermic peak of the silicon-based Cu(N3)2@CNTs composite energetic film is at the temperature of 210.95 °C, its electrostatic sensitivity is significantly less than that of Cu(N3)2 and its 50% ignition energy is about 4.0 mJ. The energetic film shows good electric explosion characteristics and is successfully ignited by laser.


2016 ◽  
Author(s):  
Subhranshu Chatterjee ◽  
◽  
Amitava Basu Mallick ◽  
Jaya Sarkar ◽  
Debdas Roy ◽  
...  

2007 ◽  
Vol 350 ◽  
pp. 7-10 ◽  
Author(s):  
Takeshi Miki ◽  
Kaori Nishizawa ◽  
Kazuyuki Suzuki ◽  
Kazumi Kato

To fabricate porous and thick alumina films, we prepared an aqueous alumina hydroxide sol containing trehalose. The alumina films were deposited by dip-coating technique on glass substrates and heating at 500 °C. The maximum thickness of the film obtained by one-run dip-coating using the sol containing trehalose was over 1000 nm. The film was an aggregate of alumina particles with a diameter of 20-40 nm and pores were interstices between the particles. The porosity of alumina film can be controlled in the range of 48-65 % by changing trehalose concentration in the dip-coating solution.


Sign in / Sign up

Export Citation Format

Share Document