Metal Injection Molding Method of Ni-Free Austenitic Stainless Steel II - Microstructure and Mechanical Properties

Author(s):  
Midori Komada ◽  
Yoshikazu Kuroda ◽  
Ryo Murakami ◽  
Noriyuki Tsuchida ◽  
Yasunori Harada ◽  
...  
2007 ◽  
Vol 26-28 ◽  
pp. 19-22
Author(s):  
Midori Komada ◽  
Yoshikazu Kuroda ◽  
Ryo Murakami ◽  
Noriyuki Tsuchida ◽  
Yasunori Harada ◽  
...  

Microstructure and mechanical properties of high nitrogen steels whose chemical composition were Fe-17Cr-12Mn-3Mo and that was produced by using metal injection molding method and nitrogen absorption methods were examined. A compact which is furnace cooled from 1573 K has a brittle surface layer with high chromium and nitrogen contents but the surface layer disappears when the compact is held at 1473 K. The compact which is furnace cooled at 1473 K is observed precipitates in the grains and the grain boundary, while the compact which is quenched at 1473 K shows homogeneous microstructure. In the heat treatments at 1473 K for 2, 5, and 10 h, the nitrogen content becomes higher with increasing of holding time. In the holding times of 5 and 10 h, the microstructure is austenite. In the tensile tests, tensile strength becomes larger with increasing of nitrogen content. In the specimen which is conducted the heat treatment at 1473 K for 10 h, tensile strength is about 1,000 MPa and elongation is 80 %, which shows better balance of strength and elongation than SUS304 and SUS316 steels.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 773
Author(s):  
Y.H. Guo ◽  
Li Lin ◽  
Donghui Zhang ◽  
Lili Liu ◽  
M.K. Lei

Heat-affected zone (HAZ) of welding joints critical to the equipment safety service are commonly repeatedly welded in industries. Thus, the effects of repeated welding up to six times on the microstructure and mechanical properties of HAZ for AISI 304N austenitic stainless steel specimens were investigated by a Gleeble simulator. The temperature field of HAZ was measured by in situ thermocouples. The as-welded and one to five times repeated welding were assigned as-welded (AW) and repeated welding 1–5 times (RW1–RW5), respectively. The austenitic matrices with the δ-ferrite were observed in all specimens by the metallography. The δ-ferrite content was also determined using magnetic and metallography methods. The δ-ferrite had a lathy structure with a content of 0.69–3.13 vol.%. The austenitic grains were equiaxial with an average size of 41.4–47.3 μm. The ultimate tensile strength (UTS) and yield strength (YS) mainly depended on the δ-ferrite content; otherwise, the impact energy mainly depended on both the austenitic grain size and the δ-ferrite content. The UTS of the RW1–RW3 specimens was above 550 MPa following the American Society of Mechanical Engineers (ASME) standard. The impact energy of all specimens was higher than that in ASME standard at about 56 J. The repeated welding up to three times could still meet the requirements for strength and toughness of welding specifications.


Sign in / Sign up

Export Citation Format

Share Document