scholarly journals A Novel Method Based on Cyclic Spectral Analysis about Carrier Frequency Estimation in the UAV Data Chain

2012 ◽  
Vol 6-7 ◽  
pp. 215-220
Author(s):  
Lin Xi Zhang ◽  
Peng Song ◽  
Ying Jun Zhang

When UAV works on the end of the task path, or affected by waves transmission environment and the influence of the electromagnetic interference, the signal of receiver will be made low signal-to-noise ratio (SNR) signal and the phase lock loop (PLL) using for carrier extraction will performance serious decline or loss locks. Therefore, in order to ensure UAV completed a predefined task successfully, low SNR carrier recovery has become one of the key technologies in the UAV data chain. In this paper, based on the basic concept of cyclic spectral analysis, we research and give the cyclic autocorrelation function and the cyclic spectral density function of the BPSK modulation signal. We emphasis a computer simulation method based on the time-smoothing FFT accumulation method and use this method to verify cyclic spectral analysis is still effective to estimate the carrier frequency when the SNR is -10 dB.

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Shen Zhou ◽  
Liu Rongfang

In the case of low signal-to-noise ratio, for the frequency estimation of single-frequency sinusoidal signals with additive white Gaussian noise, the phase unwrapping estimator usually performs poorly. In this paper, an efficient and accurate method is proposed to address this problem. Different from other methods, based on fast Fourier transform, the sampled signals are estimated with the variances approaching the Cramer-Rao bound, followed with the maximum likelihood estimation of the frequency. Experimental results reveal that our estimator has a better performance than other phase unwrapping estimators. Compared with the state-of-the-art method, our estimator has the same accuracy and lower computational complexity. Besides, our estimator does not have the estimation bias.


2021 ◽  
Vol 17 (1-2) ◽  
pp. 3-14
Author(s):  
Stathis C. Stiros ◽  
F. Moschas ◽  
P. Triantafyllidis

GNSS technology (known especially for GPS satellites) for measurement of deflections has proved very efficient and useful in bridge structural monitoring, even for short stiff bridges, especially after the advent of 100 Hz GNSS sensors. Mode computation from dynamic deflections has been proposed as one of the applications of this technology. Apart from formal modal analyses with GNSS input, and from spectral analysis of controlled free attenuating oscillations, it has been argued that simple spectra of deflections can define more than one modal frequencies. To test this scenario, we analyzed 21 controlled excitation events from a certain bridge monitoring survey, focusing on lateral and vertical deflections, recorded both by GNSS and an accelerometer. These events contain a transient and a following oscillation, and they are preceded and followed by intervals of quiescence and ambient vibrations. Spectra for each event, for the lateral and the vertical axis of the bridge, and for and each instrument (GNSS, accelerometer) were computed, normalized to their maximum value, and printed one over the other, in order to produce a single composite spectrum for each of the four sets. In these four sets, there was also marked the true value of modal frequency, derived from free attenuating oscillations. It was found that for high SNR (signal-to-noise ratio) deflections, spectral peaks in both acceleration and displacement spectra differ by up to 0.3 Hz from the true value. For low SNR, defections spectra do not match the true frequency, but acceleration spectra provide a low-precision estimate of the true frequency. This is because various excitation effects (traffic, wind etc.) contribute with numerous peaks in a wide range of frequencies. Reliable estimates of modal frequencies can hence be derived from deflections spectra only if excitation frequencies (mostly traffic and wind) can be filtered along with most measurement noise, on the basis of additional data.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4623
Author(s):  
Sinead Barton ◽  
Salaheddin Alakkari ◽  
Kevin O’Dwyer ◽  
Tomas Ward ◽  
Bryan Hennelly

Raman spectroscopy is a powerful diagnostic tool in biomedical science, whereby different disease groups can be classified based on subtle differences in the cell or tissue spectra. A key component in the classification of Raman spectra is the application of multi-variate statistical models. However, Raman scattering is a weak process, resulting in a trade-off between acquisition times and signal-to-noise ratios, which has limited its more widespread adoption as a clinical tool. Typically denoising is applied to the Raman spectrum from a biological sample to improve the signal-to-noise ratio before application of statistical modeling. A popular method for performing this is Savitsky–Golay filtering. Such an algorithm is difficult to tailor so that it can strike a balance between denoising and excessive smoothing of spectral peaks, the characteristics of which are critically important for classification purposes. In this paper, we demonstrate how Convolutional Neural Networks may be enhanced with a non-standard loss function in order to improve the overall signal-to-noise ratio of spectra while limiting corruption of the spectral peaks. Simulated Raman spectra and experimental data are used to train and evaluate the performance of the algorithm in terms of the signal to noise ratio and peak fidelity. The proposed method is demonstrated to effectively smooth noise while preserving spectral features in low intensity spectra which is advantageous when compared with Savitzky–Golay filtering. For low intensity spectra the proposed algorithm was shown to improve the signal to noise ratios by up to 100% in terms of both local and overall signal to noise ratios, indicating that this method would be most suitable for low light or high throughput applications.


2018 ◽  
Vol 10 (5-6) ◽  
pp. 578-586 ◽  
Author(s):  
Simon Senega ◽  
Ali Nassar ◽  
Stefan Lindenmeier

AbstractFor a fast scan-phase satellite radio antenna diversity system a noise correction method is presented for a significant improvement of audio availability at low signal-to-noise ratio (SNR) conditions. An error analysis of the level and phase detection within the diversity system in the presence of noise leads to a correction method based on a priori knowledge of the system's noise floor. This method is described and applied in a hardware example of a satellite digital audio radio services antenna diversity circuit for fast fading conditions. Test drives, which have been performed in real fading scenarios, are described and results are analyzed statistically. Simulations of the scan-phase antenna diversity system show higher signal amplitudes and availabilities. Measurement results of dislocated antennas as well as of a diversity antenna set on a single mounting position are presented. A comparison of a diversity system with noise correction, the same system without noise correction, and a single antenna system with each other is performed. Using this new method in fast multipath fading driving scenarios underneath dense foliage with a low SNR of the antenna signals, a reduction in audio mute time by one order of magnitude compared with single antenna systems is achieved with the diversity system.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Qi An ◽  
Zi-shu He ◽  
Hui-yong Li ◽  
Yong-hua Li

Promptitude and accuracy of signals’ non-data-aided (NDA) identification is one of the key technology demands in noncooperative wireless communication network, especially in information monitoring and other electronic warfare. Based on this background, this paper proposes a new signal classifier for phase shift keying (PSK) signals. The periodicity of signal’s phase is utilized as the assorted character, with which a fractional function is constituted for phase clustering. Classification and the modulation order of intercepted signals can be achieved through its Fast Fourier Transform (FFT) of the phase clustering function. Frequency offset is also considered for practical conditions. The accuracy of frequency offset estimation has a direct impact on its correction. Thus, a feasible solution is supplied. In this paper, an advanced estimator is proposed for estimating the frequency offset and balancing estimation accuracy and range under low signal-to-noise ratio (SNR) conditions. The influence on estimation range brought by the maximum correlation interval is removed through the differential operation of the autocorrelation of the normalized baseband signal raised to the power ofQ. Then, a weighted summation is adopted for an effective frequency estimation. Details of equations and relevant simulations are subsequently presented. The estimator proposed can reach an estimation accuracy of10-4even when the SNR is as low as-15 dB. Analytical formulas are expressed, and the corresponding simulations illustrate that the classifier proposed is more efficient than its counterparts even at low SNRs.


Sign in / Sign up

Export Citation Format

Share Document