Preliminary Result of Permafrost Roadbed Settlement Measurement Using Satellite D-InSAR Technology

2011 ◽  
Vol 105-107 ◽  
pp. 1912-1915
Author(s):  
Qu Lin Tan ◽  
Chou Xie

Monitoring ground subsidence of roadbed in permafrost region is very important for stability evaluation and safety management. To test its applicability to deformation monitoring for railway subgrade settlement in plateau permafrost region, satellite differential interferometric synthetic aperture radar technology (D-InSAR) has been applied to detect subgrade deformation in one test site along the Qinghai-Tibet railway with gathered interferometric SAR images. The preliminary experimental results showed that satellite D-InSAR technology can effectively acquire long-time deformation sequence through analyzing the ground scatterers with relative stable phase and are in accordance with the results obtained by conventional in-situ ground leveling. Along the Qinghai-Tibet railway in permafrost regions, it is found that settlement is the main behavior of subgrade deformation and the deformation amount of railway bridge is less than the sliced or the crushed rock embankment. It has very important engineering significance for state key infrastructure long-term monitoring system in plateau permafrost region.

2012 ◽  
Vol 226-228 ◽  
pp. 1651-1654 ◽  
Author(s):  
Qu Lin Tan ◽  
Chou Xie

Under inclement Qinghai-Tibet plateau environment, monitoring and analysis of railway subgrade deformation in plateau permafrost region has very important engineering significance for stability evaluation and safety management. In the paper, satellite interferometry was applied to measure subgrade deformation in the Beiluhe test site along the Qinghai-Tibet railway with gathered satellite interferometric SAR images. Based on the satellite-interferometry-derived data, the deformation characteristics of six points in different permafrost subgrades (the sliced rock embankment, the crushed rock embankment and railway bridge) along the Qinghai-Tibet railway were analyzed and compared. The analysis results show that settlement is the main behavior of railway subgrade deformation and the deformation amount of railway bridge is less than the sliced or the crushed rock embankment along the Qinghai-Tibet railway in permafrost regions.


Author(s):  
T. Qu ◽  
Q. Xu ◽  
W. Shan ◽  
Z. Li ◽  
M. Shan ◽  
...  

<p><strong>Abstract.</strong> Permafrost distributed in northeast China is the only high-altitude permafrost in China. The deformation monitoring over this permafrost region is of great importance to local climate change and ecological environments. This study focuses on the deformation monitoring of high-latitude permafrost in northeast China with time series InSAR technique. The spatial distribution characteristics, the annual deformation rates and the temporal deformation evolutions of permafrost could be retrieved from multi-temporal InSAR processing with Sentinel-1 TOPS datasets. This work concludes that time series InSAR technique could help to retrieve a comprehensive and reliable permafrost deformation, while a long time-series of displacements facilitated to better understand permafrost kinematics.</p>


2021 ◽  
Vol 13 (15) ◽  
pp. 3044
Author(s):  
Mingjie Liao ◽  
Rui Zhang ◽  
Jichao Lv ◽  
Bin Yu ◽  
Jiatai Pang ◽  
...  

In recent years, many cities in the Chinese loess plateau (especially in Shanxi province) have encountered ground subsidence problems due to the construction of underground projects and the exploitation of underground resources. With the completion of the world’s largest geotechnical project, called “mountain excavation and city construction,” in a collapsible loess area, the Yan’an city also appeared to have uneven ground subsidence. To obtain the spatial distribution characteristics and the time-series evolution trend of the subsidence, we selected Yan’an New District (YAND) as the specific study area and presented an improved time-series InSAR (TS-InSAR) method for experimental research. Based on 89 Sentinel-1A images collected between December 2017 to December 2020, we conducted comprehensive research and analysis on the spatial and temporal evolution of surface subsidence in YAND. The monitoring results showed that the YAND is relatively stable in general, with deformation rates mainly in the range of −10 to 10 mm/yr. However, three significant subsidence funnels existed in the fill area, with a maximum subsidence rate of 100 mm/yr. From 2017 to 2020, the subsidence funnels enlarged, and their subsidence rates accelerated. Further analysis proved that the main factors induced the severe ground subsidence in the study area, including the compressibility and collapsibility of loess, rapid urban construction, geological environment change, traffic circulation load, and dynamic change of groundwater. The experimental results indicated that the improved TS-InSAR method is adaptive to monitoring uneven subsidence of deep loess area. Moreover, related data and information would provide reference to the large-scale ground deformation monitoring and in similar loess areas.


2017 ◽  
Vol 209 (3) ◽  
pp. 1408-1417 ◽  
Author(s):  
Rui Tu ◽  
Jinhai Liu ◽  
Cuixian Lu ◽  
Rui Zhang ◽  
Pengfei Zhang ◽  
...  

2013 ◽  
Vol 353-356 ◽  
pp. 1604-1608
Author(s):  
Guang Bin Bai ◽  
Jie Zhao ◽  
Li Sheng Liu

Based on a subway tunnel construction, the construction method was introduced. The ground subsidence, crown settlement and convergence displacement caused by the cut tunnel are monitored during the tunneling construction and the results of monitoring data for them are analyzed. This technology wells to guide the tunnel-entering construction effectively and avoid the tunnel-entering construction process prone to landslides, thus ensuring the safety of the tunnel construction and will guiding the future construction.


Author(s):  
Hong-Il Kim ◽  
Lae-Hyong Kang ◽  
Jae-Hung Han

Dimensional stability of the space structures, such as large telescope mirrors or metering substructures, is very important because even extremely small deformations of these structures might degrade the optical performances. Therefore, precise deformation data of the space structures according to environment change are required to design these structures correctly. Also, real-time deformation monitoring of these structures in space environment is demanded to verify whether these structures are properly designed or manufactured. FBG (fiber Bragg grating) sensors are applicable to real time monitoring of the space structure because they can be embedded onto the structures with minimal weight penalty. In this research, therefore, thermal deformation measurement system for the space structures, composed of FBG sensors for real time strain measurement and DMI (displacement measuring interferometers) for accurate specimen expansion data acquisition, is developed. Thermal strains measured by distributed FBG sensors are evaluated by the comparison with the strains obtained by highly accurate DMI.


2020 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Enton Bedini

Persistent Scatterer Interferometry (PSI) analysis of Sentinel-1 time series was carried out to detect ground subsidence in the city of Recife, Brazil. The dataset consisted of sixty-eight Sentinel-1A Interferometric Wide (IW) Single Look Complex (SLC) images of the time period April 2017 – September 2019. The images were acquired in descending orbit in VV (vertical transmitting, vertical receiving) polarization. The results of the PSI analysis show that in the city of Recife occur several ground subsidence areas. The largest ground subsidence area occurs between the neighborhoods of Afogados, Torrŏes and Cordeiro. The subsidence rates in this area range from few mm/year up to -15 mm/year. This ground subsidence could be a result of groundwater extraction or of subsidence processes in urbanized reclaimed lands. Similar but smaller ground subsidence areas occur in several localities in Recife. In some cases, subsidence with rates of up to -25 mm/year is noted in small zones where new buildings have been constructed in the last decade. This should be due to ground settlement processes, taking a long time due to the particular soils and geology of the locality. This study can serve as a first contribution for further research on the ground subsidence hazard in the city of Recife and the surrounding areas by means of satellite radar imagery.


Sign in / Sign up

Export Citation Format

Share Document