Investigation of the Plane Model of Steel Staggered Truss System

2011 ◽  
Vol 105-107 ◽  
pp. 961-964
Author(s):  
Xiao Juan Li

Steel Staggered Truss System (SSTS) is a new structural system with flexible arrangement, superior performance and good economy. A plane model was established with SAP2000 and the feasibility of the plane model to study the dynamic characteristics of SSTS under horizontal earthquake was discussed through performing modal analysis and pushover analysis to the space model and the plane model of SSTS. By comparing the response of models, it showed that the plane model changed the mechanical characteristics of SSTS, and there existed errors using the plane model to research on the dynamic characteristics of SSTS under horizontal earthquake

2011 ◽  
Vol 105-107 ◽  
pp. 990-993
Author(s):  
Xiao Juan Li

A pseudo-space model as a new model of Steel Staggered Truss System was proposed to assess the transverse seismic performance of the structure. Modal analysis and pushover analysis were performed on the space model and the pseudo-space model of SSTS with SAP2000. Through comparing the results of models, it showed that the pseudo-space model reflected the lateral force characteristics of the original structure, and could simulate the stress mechanism of the structure under transverse seismic.


2017 ◽  
Vol 7 (2) ◽  
pp. 6 ◽  
Author(s):  
Xuan Zhang ◽  
Kazuyuki Hanahara ◽  
Yukio Tada

In this study, we discuss the dynamics of a type of hanging truss structural system consisting of rigid and wire members, part of which are SMA (shape memory alloy) wires. This kind of truss structure has the capability of vibration isolation and absorption. Characteristics of zero compressive stiffness of wire members, SMA wire members and hanging configuration of the structure itself contribute to the effect of vibration isolation. The hysteretic loop of SMA wires plays a significant role in vibration attenuation. Mathematical models for this kind of dynamic problem are developed. Calculation process is introduced to take into account the mechanical characteristics of SMA and wire members. Dynamic characteristics are discussed; simultaneously, the effects of vibration isolation and attenuation have been confirmed. On the basis of the numerical calculations, advantages of combinations of various types of wire members, including the truss units having no bracing wires have been demonstrated. 


2021 ◽  
Vol 2113 (1) ◽  
pp. 012061
Author(s):  
Jianmin Wang ◽  
Dong Liu ◽  
Yi Bian

Abstract The finite element modelling, mesh generation and modal analysis of the rotor worktable are carried out by combining the analysis technology of finite element software in this paper. Then, the software analysis results and the actual experimental results are compared and analyzed, so as to get the causes of error, which can provide good basic data for the use of the rotor table in the future that could better meet the needs of scientific research and teaching.


2020 ◽  
Vol 479 ◽  
pp. 115368
Author(s):  
T. Peng ◽  
M. Nogal ◽  
J.R. Casas ◽  
J.A. Lozano-Galant ◽  
J. Turmo

2013 ◽  
Vol 790 ◽  
pp. 655-658
Author(s):  
Chi Chen ◽  
Min Wang ◽  
Long Zou

The modal analysis is an approximate method to study the dynamic characteristics of the structure, the modal is the natural vibration characteristics of the structure, each modal has a specific natural frequency, damping ratios and mode shapes. This thesis will take 1.2MW horizontal axis wind turbine blade for example, and use parametric language APDL of ANSYS for directly modeling, then set the basic parameters of the material, mesh and discuss modal analysis, lastly conduct a detailed analysis of the results.


2013 ◽  
Vol 820 ◽  
pp. 67-70
Author(s):  
Tuo Li ◽  
Hong Bai Bai ◽  
Chun Hong Lu

Knitted-dapped metal rubber was developed to solve problems of metal rubber with low stiffness and test samples with different sizes were manufactured. Static tests and dynamic tests were carried out to study influences of density and thickness on the static stiffness and influences of frequency, amplitude and preload on dynamic characteristics. Results show that static stiffness rises when density or thickness increases. Frequency has little influence on dynamic characteristics. Knitted-dapped metal rubber will have smaller stiffness and better characteristics of damping, if amplitude increases; if preload increases, energy consumed in the vibration will be more.


2013 ◽  
Vol 694-697 ◽  
pp. 370-373
Author(s):  
Zhang Yu ◽  
Wen Zheng Cai

With the purpose of realizing the analysis of mechanical structure dynamic characteristics and inhibit vibration and noise, combined with the analysis of a certain type of high speed sewing machines vibration characteristics, we carry on the concrete experimental modal analysis, and compare the results of the experimental modal analysis with the results of spectrum analysis. The analysis results show that the second order natural frequency of the shell is close to two octaves under the normal working speed of sewing machine and it will lead to resonance. Enhancing the structural rigidity and the natural frequency under this modal to avoid resonance frequency is the key to improve vibration resistance of the structure.


2015 ◽  
Vol 35 (1) ◽  
pp. 64-68 ◽  
Author(s):  
D. Yu. Pimenov ◽  
V. I. Guzeev ◽  
A. A. Koshin ◽  
V. A. Pashnyov

2014 ◽  
Vol 472 ◽  
pp. 48-55
Author(s):  
Li Qiang An ◽  
Fan Peng Kong ◽  
Yong Fang Wang

Seismic vibrator is one of the most widely used equipments in exploration field. In recent years, with the development of exploration field, as well as the growing needs of high quality seismic data, the seismic vibrator's tonnage has increased a lot, which makes the stress of the vehicle frame very complicated in working state. And some local structure of the vehicle frame often appears crack phenomenon in working state. Therefore, the dynamic characteristic analysis is essential to the Seismic vibrator. In this paper, the finite element model of vehicle frame is established by ANSYS software. Through the modal analysis, the natural frequencies are obtained, and each vibration modes are analyzed. On the basis of the modal analysis, the modal neutral file of the vehicle frame is established. Using the data transfer function between ANSYS and ADAMS, the rigid-flexible coupling multi-body model is built for the dynamics simulation of the seismic vibrator. In this model, the stiffness and damping of air springs, hydraulic oil and soil are simulated by the spring-damper in the ADAMS software. The dynamic characteristics of vehicle frame under excited forces with different amplitude are obtained and analyzed. The stresses for some of the hot spots of the vehicle frame are extracted, which can be used to analyze the dynamic failure of the vehicle frame.


2013 ◽  
Vol 690-693 ◽  
pp. 3023-3026
Author(s):  
Jun Zhang ◽  
Chun Ren Tang ◽  
Hong Mei Tang ◽  
Xian Hua Li ◽  
Meng Meng Niu ◽  
...  

It is significant to study the dynamic characteristics of the mechanical system. In order to prevent accidents such as resonance and self-excited shock, modal analysis of the mechanical systems should be analyzed. The mode shape of gears was analyzed to improving the design security. The sleeve, the planet gears and the internal gear of the motor were simulated. All order natural frequency, the mode shape of the motor was obtained. Research shows that motor running is smooth when the frequency is less than 4230Hz.


Sign in / Sign up

Export Citation Format

Share Document