Tool Design and Speed Parameters Effects on Microstructure and Tensile Strength of Friction Stir Welding (FSW) 5052 Al Alloys

2011 ◽  
Vol 110-116 ◽  
pp. 3165-3170 ◽  
Author(s):  
Ghodratollah Roudini ◽  
Sajad Gholami Shiri ◽  
Masoud Mohammadi Rahvard

there are some parameters in friction stir welding (FSW) technique such as tool design, tool rotation speed and tool travel which can be controlled in a precise manner thus controlling the energy input into the system. In this study the effects of these parameters were investigated on microstructure and tensile strength of 5052 aluminum alloy. Roll sheets of this alloy were welded by FSW method at different rotation speeds (400, 800, 1600 and 2500 rpm), welding speeds (50 and 100 mm/min) and tools shoulder diameters (14 and 20 mm). The microstructure results showed that the stir zone (SZ) and thermo-mechanically affected zone (TMAZ) had dynamically recrystallized and recovered respectively. Also the tensile strength of samples welded at tool rotation speeds of 400 and 800 rpm, travel speed 50 mm/min and tools shoulder diameter of 20 mm is similar to that of base metal. The tool rotation speeds of 400 rpm have a good welding ability with higher travel speed and lower tools shoulder diameter.

2015 ◽  
Vol 813-814 ◽  
pp. 462-466 ◽  
Author(s):  
R Padmanaban ◽  
V. Muthukumaran ◽  
A. Vighnesh

Friction stir welding (FSW) has become a potential solid state joining technique with considerable advantages over conventional joining process. Defect-free friction stir welded joints with high joint strength are obtained when optimum process parameters are used. Although a large number of parameters govern the FSW process, the tool rotation speed, Welding speed and tool geometry are key parameters that influence the joint strength. In this work, a statistical model relating process parameters and the tensile strength (TS) of friction stir welded AA1100 joints is build using response surface methodology. The four independent variables are tool rotational speed (TRS), welding speed (WS), shoulder diameter (SD) and pin diameter (PD). Central Composite design is used and Analysis of Variance at 95% confidence level was applied to assess the adequacy of the developed model. Genetic algorithm is used for optimizing the parameters. The optimum process parameter values predicted using the genetic algorithm are as follows. Tool rotation speed: 1001.9 rpm; welding speed: 62 mm/min; shoulder diameter: 17.8 mm and pin diameter: 6.5 mm. The corresponding tensile strength of the joints is 73.1556 MPa


2016 ◽  
Vol 27 (1) ◽  
pp. 9-17
Author(s):  
Maryati Maryati ◽  
Bambang Soegijono ◽  
M Yudi Masduky ◽  
Tarmizi Tarmizi

Friction Stir Welding (FSW) is a new method of welding process which is affordable and provide good quality. Aluminium 5083-7075 has been connected successfully by using friction stir welding (FSW) method into butt joint connection form. Tool rotation speed is one of the important parameters in FSW. The changes of rotation speed will affect the characteristics of mechanical properties and microstructure. The parameters of welding being used are welding speed of 29 mm/minutes by varying the speed rotation of 525 rpm, 680 rpm, 910 rpm, and 1555 rpm. In order to find out the mechanical strength of welds, tensile strength and hardness testing is done while finding out the microstructure will be done by using optical microscope and Scanning Electron Microscope (SEM). The result of the research showed that the highest tensile strength obtained at 910 rpm speed rotation about 244.85 MPa and the greatest hardness values was found on aluminium 5083 around the wheel zone area about 96 HV with rotary speed of 525 rpm. Then, the result of testing the macro and microstructure on all samples indicated defect which is seen as incomplete fusion and penetration causing the formation of onion rings. In other words, it is which showed that the result of stirring and tacking in the welding area is less than perfect.


2021 ◽  
Vol 36 (1) ◽  
pp. 94-102
Author(s):  
M. M. Z. Ahmed ◽  
A. Elnaml ◽  
M. Shazly ◽  
M. M. El-Sayed Seleman

Abstract In this work, top surface lubrication during friction stir welding of polycarbonate sheets was applied. A homogenous layer of Paraffin wax has been placed on the top surface of the joint area with a width that ensures to cover the shoulder diameter. Then FSW was applied using conventional FSW tool with rotating pin and shoulder at different FSW parameters (Rotation speeds of 1 000, 1500, 2 000 min–1 and welding speeds of 25, 50, 75,100 mm/min). The main objective of using the wax is to act as a lubricant that reduces the friction between the shoulder and the polycarbonate surface. The joints produced were investigated in terms of surface quality, internal defects, and mechanical properties. During FSW the wax is melted and played as lubricant between the tool shoulder and the polycarbonate surface and resulted in defect-free surface with no thickness reduction of the original plate. The transverse cross-section showed defect-free joints for the majority of the FSW parameters investigated. Tensile testing results showed a reduction of the tensile strength after FSW, and an enhancement in the tensile strength with the increase of welding speed or rotation speed. The fracture occurs at the joint zone and the fracture surface investigation using SEM showed the existence of spherulitic structure in the weld joint.


2013 ◽  
Vol 372 ◽  
pp. 478-485 ◽  
Author(s):  
Chaiyoot Meengam ◽  
Muhamad Tehyo ◽  
Prapas Muangjunburee ◽  
Jessada Wannasin

The aim of this research is to study the influence of welding parameters on the metallurgical and mechanical properties of friction stir welded butt joints of dissimilar aluminum alloy sheets between Semi-Solid Metal (SSM) 356-T6 and AA6061-T651 by Friction Stir Welding (FSW). The base materials of SSM 356-T6 and AA6061-T651 were located on the advancing side (AS) and on the retreating side (RS) respectively. The base materials were joined under different tool rotation speeds and welding speeds. The material flows from SSM 356 and AA6061-T651 were clearly visible in the weld nugget. In addition, the mixtures of fine equiaxed grain were observed in the stir zone. The increase in tool rotation speed results in the increase in tensile strength of the joints. As for welding speed associated with various tool rotation speeds, an increase in the welding speed affected lesser the base materials tensile strength up to an optimum value; after which its effect increased. Tensile elongation was generally greater at greater tool rotation speed. An averaged maximum tensile strength of 206.3 MPa was derived for a welded specimen produced at the tool rotation speed of 2,000 rpm associated with the welding speed of 80 mm/min. In the weld nugget, higher hardness was observed in the stir zone than in the thermo-mechanically affected zone. Away from the weld nugget, hardness levels increased back to the levels of the base materials.


10.29007/6xnv ◽  
2018 ◽  
Author(s):  
Kamlesh Dhansukhlal Bhatt ◽  
Nikul Patel ◽  
Vishal Mehta

Magnesium & its alloys are flammable for conventional fusion welding process. This adverse effect can be eliminated by a non-fusion solid state welding process, established by The Welding Institute (TWI) in 1991, called friction stir welding (FSW). This is applied in this investigation for joining two plates together by using non-consumable tools (three pin profiles) between two abutting plates of magnesium alloy AZ91 having 6 mm thickness. FSW process joins the plates with certain advantages such as low distortion, no shielding gas required, fine recrystallized microstructure, no fumes liberated during the process, etc. In Friction stir welding, process parameters such as welding speed, tool rotation speed, tool dimensions and axial force play an important role during the process. In the present work, the 6 mm thick plates of the said alloy are welded at traverse speed of 28 mm/min to 56 mm/min with tool rotation speed ranging from 710 rpm to 1400 rpm. Tensile strength testing & simulation of peak temperatures has been carried out for establishing correlationship between best parameters from the selected ones with temperature profiles obtained by those parameters for giving optimum structure-property relationship using different pin profiles.


Author(s):  
Dae Min Kang ◽  
◽  
Kyoung Do Park ◽  
Dai Yeal Lee ◽  
◽  
...  

In this study, a three-way factorial design is used to optimize the friction stir welding (FSW) process of Al 6061 alloy. Control factors are shoulder diameter, travel speed, and rotation speed of tool, and each factor has three levels. Tensile strength tests are also carried out to measure the mechanical properties under various FSW conditions. In this work, travel speed, shoulder diameter, and tool speed are shown to individually be meaningful factors in the tensile strength of the alloy, but interactions among the weld factors are not detected. The result of the study is that the optimum process condition for maximum tensile strength is estimated to be A3B3C3. In addition, the presumed range of tensile strength under the optimal conditions is estimated to be 257±23 (Mpa) with 95% reliability.


2021 ◽  
Vol 892 ◽  
pp. 159-168
Author(s):  
Arif Wahyudianto ◽  
Mochammad Noer Ilman ◽  
Priyo Tri Iswanto ◽  
Kusmono ◽  
Akhyar Akhyar

The welding between two different grades of aluminum alloy, specifically AA5083 and AA6061-T6, is very difficult to obtain optimal results when using conventional welding methods such as TIG/MIG welding. Therefore, a solid-state joining technique is highly recommended to overcome these problems, one of which is friction stir welding (FSW). The effect of rotation speed on microstructure, microhardness, and tensile properties of dissimilar Friction Stir welded AA5083 and AA6061-T6 aluminum alloys were investigated. Three different rotation speeds (910, 1500, and 2280 rpm) were used to weld the dissimilar alloys. The metallographic analysis of joints showed the presence of various zones such as BM (base material), HAZ (heat affected zone), TMAZ (thermo-mechanically affected zone), and NZ (nugget zone) were observed and analyzed by mean of optical and scanning electron microscope. The results showed that increasing the rotation speed from 900 to 2280 rpm made grain coarsening in NZ and the mass distribution of the material is more evenly distributed, as well as increased hardness and tensile strength of the joint. The highest values in microhardness in NZ and tensile strength at the join were founded at the speed of 2280 rpm and 1500 rpm which was similar to 2280 rpm, respectively.


2015 ◽  
Vol 830-831 ◽  
pp. 274-277
Author(s):  
M. Agilan ◽  
R. Anbukkarasi ◽  
T. Venkateswran ◽  
Paul G. Panicker ◽  
Sathish V. Kailas ◽  
...  

For aerospace applications, Al-Cu-Li alloys are more attractive than conventional aluminum alloys due to their low density, high modulus and high strength. AA2195 is a third generation Al-Li alloy, developed with improved weldability. In this study, AA2195 alloy of 5mm thick sheets were welded by friction stir welding process (FSW). Tool rotational speed was varied from 400 rpm to 1000 rpm at constant travel speed of 60mm/min. Optimum tool rotation speed was identified and defect free weld coupons were processed with optimized parameter. Mechanical properties and micro structural characterization have been conducted on FSW welds.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Vaira Vignesh Ramalingam ◽  
R. Arun Kumar ◽  
N. Srirangarajalu ◽  
R. Padmanaban

Aluminum alloy AA8011 is emerging as a promising material for modern engineering applications in which improved tensile strength, hardness, corrosion-resistance, and wear-resistance of materials are required. Typically, AA8011 alloys are utilized in air-conditioning ducts and heat exchanger fins in ships, leisure boats, luxury vessels, workboats, fishing vessels, and patrol boats. However, the conventional welding of AA8011 is a challenging procedure. In this context, this paper focuses on the development of an effective solid-state welding methodology for AA8011 alloy welding. The AA8011 alloy was friction stir welded by varying the tool rotation speed, traverse speed, and shoulder diameter. The microhardness, tensile strength, joint efficiency, elongation, corrosion rate, and wear rate of the friction stir welded specimens were compared with the base material. Fractography analysis was conducted after the tensile test and surface morphology analysis after corrosion and wear tests, using scanning electron microscopy. The compositional elements in the corroded and worn section of the specimens were analyzed using energy-dispersive X-ray spectroscopy. Based on the joint efficiency as a primary constraint, the optimum process parameters for friction stir welding of aluminum alloy AA8011 have been established as follows: tool rotation speed of 1200 rpm, tool traverse speed of 45 mm/min, and tool shoulder diameter of 21 mm.


Sign in / Sign up

Export Citation Format

Share Document