Studies on Friction Stir Welding of Al-Cu-Li (AA2195) Alloy

2015 ◽  
Vol 830-831 ◽  
pp. 274-277
Author(s):  
M. Agilan ◽  
R. Anbukkarasi ◽  
T. Venkateswran ◽  
Paul G. Panicker ◽  
Sathish V. Kailas ◽  
...  

For aerospace applications, Al-Cu-Li alloys are more attractive than conventional aluminum alloys due to their low density, high modulus and high strength. AA2195 is a third generation Al-Li alloy, developed with improved weldability. In this study, AA2195 alloy of 5mm thick sheets were welded by friction stir welding process (FSW). Tool rotational speed was varied from 400 rpm to 1000 rpm at constant travel speed of 60mm/min. Optimum tool rotation speed was identified and defect free weld coupons were processed with optimized parameter. Mechanical properties and micro structural characterization have been conducted on FSW welds.

2016 ◽  
Vol 857 ◽  
pp. 228-231
Author(s):  
Ho Sung Lee ◽  
Ye Rim Lee ◽  
Kyung Ju Min

Aluminum-Lithium alloys have been found to exhibit superior mechanical properties as compared to the conventional aerospace aluminum alloys in terms of high strength, high modulus, low density, good corrosion resistance and fracture toughness at cryogenic temperatures. Even though they do not form low-melting eutectics during fusion welding, there are still problems like porosity, solidification cracking, and loss of lithium. This is why solid state friction stir welding is important in this alloy. It is known that using Al-Cu-Li alloy and friction stir welding to super lightweight external tank for space shuttle, significant weight reduction has been achieved. The objective of this paper is to investigate the effect of friction stir tool rotation speed on mechanical and microstructural properties of Al-Cu-Li alloy. The plates were joined with friction stir welding process using different tool rotation speeds (300-800 rpm) and welding speeds (120-420 mm/min), which are the two prime welding parameters in this process.


10.29007/6xnv ◽  
2018 ◽  
Author(s):  
Kamlesh Dhansukhlal Bhatt ◽  
Nikul Patel ◽  
Vishal Mehta

Magnesium & its alloys are flammable for conventional fusion welding process. This adverse effect can be eliminated by a non-fusion solid state welding process, established by The Welding Institute (TWI) in 1991, called friction stir welding (FSW). This is applied in this investigation for joining two plates together by using non-consumable tools (three pin profiles) between two abutting plates of magnesium alloy AZ91 having 6 mm thickness. FSW process joins the plates with certain advantages such as low distortion, no shielding gas required, fine recrystallized microstructure, no fumes liberated during the process, etc. In Friction stir welding, process parameters such as welding speed, tool rotation speed, tool dimensions and axial force play an important role during the process. In the present work, the 6 mm thick plates of the said alloy are welded at traverse speed of 28 mm/min to 56 mm/min with tool rotation speed ranging from 710 rpm to 1400 rpm. Tensile strength testing & simulation of peak temperatures has been carried out for establishing correlationship between best parameters from the selected ones with temperature profiles obtained by those parameters for giving optimum structure-property relationship using different pin profiles.


2011 ◽  
Vol 110-116 ◽  
pp. 3165-3170 ◽  
Author(s):  
Ghodratollah Roudini ◽  
Sajad Gholami Shiri ◽  
Masoud Mohammadi Rahvard

there are some parameters in friction stir welding (FSW) technique such as tool design, tool rotation speed and tool travel which can be controlled in a precise manner thus controlling the energy input into the system. In this study the effects of these parameters were investigated on microstructure and tensile strength of 5052 aluminum alloy. Roll sheets of this alloy were welded by FSW method at different rotation speeds (400, 800, 1600 and 2500 rpm), welding speeds (50 and 100 mm/min) and tools shoulder diameters (14 and 20 mm). The microstructure results showed that the stir zone (SZ) and thermo-mechanically affected zone (TMAZ) had dynamically recrystallized and recovered respectively. Also the tensile strength of samples welded at tool rotation speeds of 400 and 800 rpm, travel speed 50 mm/min and tools shoulder diameter of 20 mm is similar to that of base metal. The tool rotation speeds of 400 rpm have a good welding ability with higher travel speed and lower tools shoulder diameter.


Author(s):  
Izabela Kalemba ◽  
Stanisław Dymek

Aluminium alloy 7136 belongs to the Al–Zn–Mg–Cu group of aluminium alloys strengthened by precipitation. These alloys offer very good properties, i.e. high strength combined with good corrosion resistance, which makes them suitable for aerospace applications. The limited range of applications of these alloys is due to problems associated with their welding. The Al–Zn–Mg–Cu alloys are classified as non-weldable. The aim of this study was to determine the quality and properties of friction stir welded (FSW) joints of alloy 7136-T76. This article presents the results of a detailed study into the microstructure and mechanical properties of FSW welds. The paper demonstrates that the FSW method is suitable for joining Al–Zn–Mg–Cu alloys. The FSW joints are of good quality and high mechanical properties. Tests of joints created at various tool rotation speeds have shown that joints of suitable quality, in terms of microstructure and properties, can be obtained for a relatively wide range of process parameters. The tool rotation speeds applied during the welding process did not have a significant influence on the quality of the welds.


2019 ◽  
Vol 48 (1) ◽  
pp. 37-46
Author(s):  
Akshansh Mishra ◽  
Devarrishi Dixit

Friction Stir Welding (FSW) is a solid state joining process which possesses a great potential to revolutionise the aerospace industries. Distinctive materials are selected as aerospace alloys to withstand higher temperature and loads. Sometimes these alloys are difficult to join by a conventional welding process but they are easily welded by FSW process. The FSW process in aerospace applications can be used for: aviation for fuel tanks, repair of faulty welds, cryogenic fuel tanks for space vehicles. Eclipse Aviation, for example, has reported dramatic production cost reductions with FSW when compared to other joining technologies. This paper will discuss about the mechanical and microstructure properties of various aerospace alloys which are joined by FSW process.


2010 ◽  
Vol 638-642 ◽  
pp. 1185-1190 ◽  
Author(s):  
Hui Jie Liu ◽  
Li Zhou ◽  
Yong Xian Huang ◽  
Qi Wei Liu

As a new solid-state welding process, friction stir welding (FSW) has been successfully used for joining low melting point materials such as aluminum and magnesium alloys, but the FSW of high melting point materials such as steels and titanium alloys is still difficult to carry out because of their strict requirements for the FSW tool. Especially for the FSW of titanium alloys, some key technological issues need to solve further. In order to accomplish the FSW of titanium alloys, a specially designed tool system was made. The system was composed of W-Re pin tool, liquid cooling holder and shielding gas shroud. Prior to FSW, the Ti-6Al-4V alloy plates were thermo-hydrogen processed to reduce the deformation resistance and tool wear during the FSW. Based on this, the thermo-hydrogen processed Ti-6Al-4V alloy with different hydrogen content was friction stir welded, and the microstructural characterizations and mechanical properties of the joints were studied. Experimental results showed that the designed tool system can fulfill the requirements of the FSW of titanium alloys, and excellent weld formation and high-strength joint have been obtained from the titanium alloy plates.


2021 ◽  
Vol 23 (2) ◽  
pp. 98-115
Author(s):  
Alexey Ivanov ◽  
◽  
Valery Rubtsov ◽  
Andrey Chumaevskii ◽  
Kseniya Osipovich ◽  
...  

Introduction. One of friction stir welding types is the bobbin friction stir welding (BFSW) process, which allows to obtain welded joints in various configurations without using a substrate and axial embedding force, as well as to reduce heat loss and temperature gradient across the welded material thickness. This makes the BFSW process effective for welding aluminum alloys, which properties are determined by their structural-phase state. According to research data, the temperature and strain rate of the welded material have some value intervals in which strong defect-free joints are formed. At the same time, much less attention has been paid to the mechanisms of structure formation in the BFSW process. Therefore, to solve the problem of obtaining defect-free and strong welded joints by BFSW, an extended understanding of the basic mechanisms of structure formation in the welding process is required. The aim of this work is to research the mechanisms of structure formation in welded joint of AA2024 alloy obtained by bobbin tool friction stir welding with variation of the welding speed. Results and discussion. Weld formation conditions during BFSW process are determined by heat input into a welded material, its fragmentation and plastic flow around the welding tool, which depend on the ratio of tool rotation speed and tool travel speed. Mechanisms of joint formation are based on a combination of equally important processes of adhesive interaction in “tool-material” system and extrusion of metal into the region behind the welding tool. Combined with heat dissipation conditions and the configuration of the “tool-material” system, this leads to material extrusion from a welded joint and its decompaction. This results in formation of extended defects. Increasing in tool travel speed reduce the specific heat input, but in case of extended joints welding an amount of heat released in joint increases because of specific heat removal conditions. As a result, the conditions of adhesion interaction and extrusion processes change, which leads either to the growth of existing defects or to the formation of new ones. Taking into account the complexity of mechanisms of structure formation in joint obtained by BFSW, an obtaining of defect-free joints implies a necessary usage of various nondestructive testing methods in combination with an adaptive control of technological parameters directly in course of a welding process.


Author(s):  
Santosh Vanama

<p>The paper propose modelling and fabrication of friction stir welding end-effector for ABB IRB1410 robot. A dynamically developing version of pressure welding processes, join material without reaching the fusion temperature called friction stir welding. As friction stir welding occurs in solid state, no solidification structures are created thereby eliminating the brittle and eutectic phase’s common to fusion welding of high strength aluminium alloys. In this paper, Friction stir welding is applied to aluminum sheets of 2 mm thickness. A prototype setup is developed to monitor the evolution of main forces and tool temperature during the operation. Pressure of a gripper plays a major role for tool rotation and developing torque.  Fabrication of the tool has done. Force calculations are done by placing the sensors on the outer surface of gripper. Methods of evaluating weld quality are surveyed as well.</p>


Author(s):  
Tarmizi Tarmizi ◽  
Riki Indrawan ◽  
Irfan Irfan

PENGARUH TOOL ROTATION SPEED TERHADAP SIFAT MEKANIK SAMBUNGAN ALUMINIUM PADUAN 6061 T6 PADA PROSES FRICTION STIR WELDING. Pengelasan aduk tekan merupakan proses pengelasan yang baru dikembangkan pada tahun 1991, hingga saat ini berbagai penelitian terus dilakukan untuk menemukan parameter yang dapat menghasilkan sambungan las yang optimum sebagai alternatif proses pengelasan fusi yang masih memiliki beberapa kekurangan. Penelitian ini bertujuan untuk mengetahui pengaruh kecepatan putar tool yang menjadi salah satu parameter penting dalam friction stir welding pada pelat aluminium paduan 6061-T6 dengan tebal 6 mm terhadap sifat mekanik sambungan las, dengan variasi kecepatan putar yang digunakan 910 rpm, 1175 rpm, 1555 rpm, 1700 rpm dan 2000 rpm untuk mendapatkan parameter yang optimum. Berdasarkan penelitian yang telah dilakukan didapatkan hasil bahwa sambungan las dengan kecepatan putaran 910 rpm, 1175 rpm dan 1555 rpm tidak terdapat cacat dan memenuhi kriteria sambungan las berdasarkan standar AWS D17.3 sedangkan sambungan las yang memiliki sifat mekanik yang paling optimum yaitu sambungan las dengan kecepatan putar tool 910 rpm karena pengkasaran butir dan larutnya presipitat tidak terlalu signifikan dibandingkan dengan kecepatan putaran lainnya.Kata kunci: Pengelasan aduk tekan, pengelasan fusi, kecepatan putar, tool, aluminium paduan 6061-T6.


2021 ◽  
Vol 23 (3) ◽  
pp. 72-83
Author(s):  
Kirill Kalashnikov ◽  
◽  
Andrey Chumaevskii ◽  
Tatiana Kalashnikova ◽  
Aleksey Ivanov ◽  
...  

Introduction. Among the technologies for manufacturing rocket and aircraft bodies, marine vessels, and vehicles, currently, more and more attention is paid to the technology of friction stir welding (FSW). First of all, the use of this technology is necessary where it is required to produce fixed joints of high-strength aluminum alloys. In this case, special attention should be paid to welding thick-walled blanks, as fixed joints with a thickness of 30.0 mm or more are the target products in the rocket-space and aviation industries. At the same time, it is most prone to the formation of defects due to uneven heat distribution throughout the height of the blank. It can lead to a violation of the adhesive interaction between the weld metal and the tool and can even lead to a destruction of the welding tool. The purpose of this work is to reveal regularities of welding tool destruction depending on parameters of friction stir welding process of aluminum alloy AA5056 fixed joints with a thickness of 35.0 mm. Following research methods were used in the work: the obtaining of fixed joints was carried out by friction welding with mixing, the production of samples for research was carried out by electric erosion cutting, the study of samples was carried out using optical metallography methods. Results and discussion. As a result of performed studies, it is revealed that samples of aluminum alloy with a thickness of 35.0 mm have a heterogeneous structure through the height of weld. There are the tool shoulder effect zone and the pin effect zone, in which certain whirling of weld material caused by the presence of grooves on tool surface is distinctly distinguished. It is shown that the zone of shoulders effect is the most exposed to the formation of tunnel-type defects because of low loading force and high welding speeds. It is revealed that tool destruction occurs tangentially to the surface of the tool grooves due to the high tool load and high welding speeds.


Sign in / Sign up

Export Citation Format

Share Document