New Method for Preparing Rubber/Clay Nanocomposites

2011 ◽  
Vol 110-116 ◽  
pp. 3810-3817 ◽  
Author(s):  
Jing Hua Tan ◽  
Xiao Ping Wang ◽  
Yuan Fang Luo ◽  
De Min Jia

Rubber/Ca-montmorillonite (Ca-MMT) nanocomposites with exfoliated Ca-MMT layers was prepared by a new preparation method named masterbatch method, in which the masterbatch was prepared by co-coagulating nature rubber latex and bis [3-triethoxysilylpropyl-] tetrasulfide (TESPT) modified Ca-MMT aqueous suspension and then the masterbatch accompanied with carbon black (N220) were used in the system of SBR and ENR. The properties of TESPT in-situ modified Ca-MMT were investigated by Fourier-transform infrared spectroscopy and thermogravimetric analysis. The results showed that the TESPT has reacted with the surface groups of Ca-MMT. The dispersion of the Ca-MMT in masterbatch and vulcanized sample was characterized by X-ray diffraction. The results showed that in the masterbatch an exfoliated structure was obtained and in the vulcanized sample a coexistence of intercalated-exfoliated structure was obtained. The influence of the Ca-MMT loading on the structure and properties of the nanocomposites were studied. It was found that the incorporation of Ca-MMT hindered the vulcanization, improved mechanical properties, thermal properties and aging resistance properties. The dynamic mechanical analysis results showed a decrease of tanδ max when the Ca-MMT is added.

2007 ◽  
Vol 124-126 ◽  
pp. 1083-1086
Author(s):  
Jun Hee Sung ◽  
Hyoung Jin Choi

Nanocomposites of conducting polymers of polyaniline (PANI), poly(oethoxyaniline) (PEOA) and polypyrrole (PPy) with clay prepared via either in-situ emulsion polymerization or solvent intercalation were investigated especially for electrorheological fluid (ER) application. Internal structures of these nanocomposites were examined via wide angle X-ray diffraction (WAXD), and transmission electron microscope (TEM). The intercalated nanostructures analyzed via WAXD and TEM were correlated with the electrical property change originated from the nanoscale interaction between clay and conducting polymer. Moreover, their ER behaviors were measured via rotational rheometer with external electric field controller.


e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Mohammad Galehassadi ◽  
Fatemeh Hosseinzadeh ◽  
Mehrdad Mahkam

Abstract Nanocomposites of polystyrene (PS) was prepared with new styrenic ionic liquid, N-(4-vinyl benzyl)-(N,N-dimethylamino) pyridinium chloride[VBMAP], surfactants used as organic modifications for the clays. Sodium montmorillonite (Na-MMT) was successfully modified by [VBMAP] to become OMMT through cation exchange technique which is shown by the increase of basalspacing of clay by XRD. The composite material based on polystyrene and organo-modified montmorillonite (OMMT) was prepared by insitu polymerization and characterized. The morphology of the polymer/clay hybrids was evaluated by X-ray diffraction (XRD) ,transmission electron microscopy (TEM) and scanning electron microscopy (SEM), showing good overall dispersion of the clay. The thermal stability of the polymer/clay nanocomposites were enhanced, as evaluated by thermogravimetric analysis.


2010 ◽  
Vol 123-125 ◽  
pp. 247-250
Author(s):  
Yu Qing Zhang ◽  
Yu Xin He ◽  
Li Zhang ◽  
Jun Xian Li

A new type of EVA-g-PU/OMMT nanocomposites was synthesized through the method of chemical modification and melt intercalation. FTIR testing showed that the PU prepolymer was grafted on EVA main chains successfully. The structures of EVA-g-PU/OMMT nanocomposites were characterized by X-ray diffraction (XRD) and by high-resolution transmission electron microscopy (HRTEM). The enhanced storage modulus of EVA-g-PU/OMMT nanocomposites was characterized by dynamic mechanical analysis (DMA). The thermal stabilities of EVA/clay nanocomposites were also studied by thermal gravimetric analysis (TGA). Mechanical testing showed that the tensile strength and tear strength of EVA-g-PU/OMMT nanocomposites were far superior to pure EVA.


2004 ◽  
Vol 03 (04n05) ◽  
pp. 663-669 ◽  
Author(s):  
S.-J. PARK ◽  
F.-L. JIN ◽  
J.-R. LEE

A novel nanocomposites of modified clay in a glassy epoxy were prepared using a direct melt intercalation technique. The contents of oganoclay were varied with 0, 1, 2, and 3 wt% and N-benzylpyrazinium hexafluoroantimonate (BPH) was used for curing of epoxy matrix as a cationic latent catalyst. Dynamic mechanical analysis (DMA) measurement was performed to examine the glass transition temperature of the nanocomposites. As a result, X-ray diffraction indicated the intercalation of the epoxy chains happening inside the gallery of clay. The nanocomposites showed a higher glass transition temperature and storage modulus than those of the pristine epoxy. The mechanical interfacial properties of the nanocomposites were also investigated and the improvement in tearing energy of 160% over pristine epoxy was obtained.


2020 ◽  
Vol 15 (3) ◽  
pp. 798-807
Author(s):  
Hodhaifa Derdar ◽  
Geoffrey Robert Mitchell ◽  
Zakaria Cherifi ◽  
Mohammed Belbachir ◽  
Mohamed Benachour ◽  
...  

Polylimonene-clay nanocomposites (PLM-Mag 2, 3, 6 and 10% by weight of clay) were prepared by mixing Maghnite-CTA+ (Mag-CTA+) and polylimonene (PLM) in solution using ultrasonic irradiation. The catalyst preparation method were studied in order to determine and evaluate their structural, morphological and thermal properties. The Mag-CTA+ is an organophylic montmorillonite silicate clay prepared through a direct exchange process, using green natural clay of Maghnia (west of Algeria) called Maghnite. The Algerian clay was modified by ultrasonic-assisted method using cetyltrimethylammonuim bromide (CTAB) in which they used as green nano-reinforcing filler. Polylimonene was obtained by the polymerization of limonene, using Mag-H+ as a catalyst. The morphology of the obtained nanocomposites was studied by X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and infrared spectroscopy (FT-IR). Thermogravimetric analysis (TGA) shows that the nanocomposites have a high degradation temperature (200−250 °C) compared with the pure polylimonene (140 °C). The analyses confirmed the chemical modification of montmorillonite layers and their uniformly dispersion in the polylimonene matrix. Exfoliated structures were obtained for low amounts of clay (2 and 3% by weight), while intercalated structures and immiscible regions were detected for high amounts of clay (6 and 10% by weight). Copyright © 2020 BCREC Group. All rights reserved 


2017 ◽  
Vol 14 (2) ◽  
pp. 204-211 ◽  
Author(s):  
Fatima Zeggai ◽  
Mohammed Belbachir ◽  
Aicha Hachmaoui

In this work we report a simple way for the conducting polymer nanocomposites synthesis using on algerian hydrophilic natural Montmorillonite (MMT) nanoclay named Maghnite (Mag) as dopant. The electrochemical properties study of the following conducting polymers: poly(4-aminobenzylamine) (P4ABA) and polyaniline (PANI) nanocomposites with copper maghnite (Mag-Cu) were successfully prepared by In-Situ polymerization, in presence of inorganic nanolayers of clay, and oxidizing agent ammonium persulfate. The synthesis of copolymers was developed at different feed mole fractions of monomer. The products were characterized by the Fourier transform Infrared (FT-IR), the ultraviolet-visible (UV–vis) spectroscopies and X-ray diffraction (XRD). The results showed that the in-situ polymerization produced real nanocomposites containing aniline and 4-aminobenzylamine units.


2020 ◽  
Vol 27 (2) ◽  
pp. 529-537 ◽  
Author(s):  
Marion Louvel ◽  
James W. E. Drewitt ◽  
Allan Ross ◽  
Richard Thwaites ◽  
Benedict J. Heinen ◽  
...  

A new diamond-anvil cell apparatus for in situ synchrotron X-ray diffraction measurements of liquids and glasses, at pressures from ambient to 5 GPa and temperatures from ambient to 1300 K, is reported. This portable setup enables in situ monitoring of the melting of complex compounds and the determination of the structure and properties of melts under moderately high pressure and high temperature conditions relevant to industrial processes and magmatic processes in the Earth's crust and shallow mantle. The device was constructed according to a modified Bassett-type hydrothermal diamond-anvil cell design with a large angular opening (θ = 95°). This paper reports the successful application of this device to record in situ synchrotron X-ray diffraction of liquid Ga and synthetic PbSiO3 glass to 1100 K and 3 GPa.


Sign in / Sign up

Export Citation Format

Share Document