Effect of Laser Beam on Double Wire Pulsed MIG Welding Process

2011 ◽  
Vol 130-134 ◽  
pp. 4169-4173
Author(s):  
Li Yan Lou ◽  
Huan Li ◽  
Xu You Wang ◽  
Wei Wang ◽  
Ying Gao

Based on the coupling of laser beam and double arcs, a novel process was investigated. This research set up the laser-double wire pulsed MIG hybrid welding system. Meanwhile the current and voltage sensors were used to detect welding current and arc voltage wave-form and high-speed videography system was used to observe the metal transfer process and arc behavior. The three signals were acquired synchronously. The results showed that the synergic action of the three different heat sources leads to a change in metal transfer mode. It was revealed that the metal transfer mode was two droplets per pulse in laser-double wire hybrid welding process while one droplet per pulse in double wire welding process with the same certain experiment parameters. And we also discovered that the arcs were attracted strongly by the laser beam.

2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940040
Author(s):  
Yang Wang ◽  
Zhongyin Zhu ◽  
Guoqing Gou ◽  
Lin Peng ◽  
Yali Liu ◽  
...  

The cold metal transfer (CMT) with addition of pulses (CMT[Formula: see text]P) process is a new CMT welding method. This paper uses a high-speed camera and electrical signal synchronization acquisition system to perform a CMT[Formula: see text]P welding test on a 10 mm thick Q235 steel plate, and performs arc characteristic and droplet transfer behavior in the welding process. It has been founded that under relatively small currents and voltages, the CMT[Formula: see text]P transfer mode is a combination of a projected transfer mode with one droplet in the pulse period and a short circuit transfer mode during the CMT period. The process is stable with little spatter; at relatively large currents and voltages, the transition mode is the combination of pulse transfer, spray transfer and short circuit transfer. It results in one or more droplets that enter the pool both in pulse transfer in the spray transfer mode during the pulse period and in the short circuit transfer mode during the CMT period in a weld cycle.


2014 ◽  
Vol 900 ◽  
pp. 565-569
Author(s):  
Kai Li ◽  
Hong Ming Gao ◽  
Hai Chao Li ◽  
Shan Gong

The metal transfer behavior in hyperbaric GMAW process was investigated by using a high speed camera system with infrared laser as backlight. The metal transfer mode at 1-12bar argon environment shows different characteristics. Three kinds were observed: large droplet repelled transfer, projected repelled transfer and hyperbaric streaming transfer. Large droplet repelled transfer occurs mostly in the welding process with low feeding speed and relatively low welding voltage. Projected repelled transfer appears at middle feeding speed and high ambient pressure. Transfer tracks of former two modes deviate from the axial direction of welding wire. The spatter is produced more frequently in the projected repelled transfer mode. Hyperbaric streaming transfer is found meanly at high feeding speed and relatively high voltage. Because of its stability reflected from metal transfer process, hyperbaric GMAW process with hyperbaric streaming transfer mode should be employed preferentially.


2018 ◽  
Vol 175 ◽  
pp. 02019
Author(s):  
ZHANG Fulong ◽  
ZHANG Hong ◽  
LIU Fengde

The high-speed camera was used to collect the droplet transfer pattern and arc pattern of the laser-arc hybrid welding process. Using the methods of image processing and mathematical statistics, the effects of different laser and arc power conditions on the welding stability were studied. The results show that the melting width depends on the welding current, the depth of penetration depends on the laser power, the droplet transition pattern, the actual filament spacing and the arc length determine the welding stability of the laser arc hybrid welding.


2011 ◽  
Vol 189-193 ◽  
pp. 3395-3399 ◽  
Author(s):  
Ning Guo ◽  
Yan Fei Han ◽  
Chuan Bao Jia ◽  
Yong Peng Du

The metal transfer process with different welding parameters in rotating arc narrow gap horizontal welding is successfully observed by the high-speed photography system. The effects of wire rotating frequency on metal transfer process in rotating arc narrow gap horizontal welding are novelly explored. The metal transfer with different wire rotating frequency presents different modes. The results indicate that the droplet transfer has stable process with the rotating frequency of 5-20 Hz. And the weld formation is quite shapely. But with the high rotating frequency of 50 Hz, the metal transfer process is not acceptable and the weld formation is very pool. Metal transfer process is one of the most important factors of effecting the weld formation in rotating arc horizontal welding process besides the molten pool behavior and welding thermal circles.


2013 ◽  
Vol 718-720 ◽  
pp. 202-208 ◽  
Author(s):  
Mao Ai Chen ◽  
Yuan Ning Jiang ◽  
Chuan Song Wu

With high-speed welding inverter and precisely controlling the welding current with arc-bridge state, advanced pulse current waveforms can be produced to optimize the transfer characteristics of short circuiting transfer welding. In this paper, the images of droplet/wire, and the transient data of welding current and arc voltage were simultaneously recorded to study the influence of peak arcing current, background arcing current and tail-out time on the stability of short circuiting transfer process. It was found that maximum short circuiting transfer stability is reached under specific welding conditions. Any deviation from these conditions will cause abnormal rises in arc voltage indicating instantaneous arc extinguishing and greater spatter. Optimal welding conditions were obtained to achieve the maximum stability of short circuiting metal transfer process.


Author(s):  
Y Wu ◽  
R Kovacevic

Gas metal arc welding has been generally accepted as the preferred joining technique due to its advantages in high production and automated welding applications. Separate control of arc energy and arc force is an essential way to improve the welding quality and to obtain the projected metal transfer mode. One of the most effective methods for obtaining separate control is to exert an additional force on the metal transfer process. In this paper, the droplet transfer process with additional mechanical force is studied. The welding system is composed of an oscillating wire feeder. The images of molten metal droplets are captured by a high-speed digital camera, and both the macroscopic appearance and the cross-sectional profiles of the weld beads are analysed. It is shown that the droplet transfer process can be significantly improved by wire electrode oscillation, and a projected spray transfer mode can be established at much lower currents. By increasing the oscillation frequency, the droplet transfer rate increases while the droplet size decreases. In addition, the improvement in the droplet transfer process with wire oscillation leads to an enhancement of the surface quality and a modification of the geometry of the weld beads that could be of importance for overlay cladding and rapid prototyping based on deposition by welding.


2021 ◽  
Author(s):  
Liming Liu ◽  
Zeli Wang ◽  
Tianyi Zhang ◽  
Xianli Ba

Abstract Triple-wire gas indirect arc welding (TW-GIA) has the advantages of low heat input and high deposition rate. However, the simultaneous melting of triple wires makes the metal transfer mode complicated. The unknown of the metal transfer mode restricts the development of this technology. In this paper, high-speed camera systems and electrical signal acquisition sensors were used to explore the TW-GIA metal transfer mode. The static force model and the arc conductive channel model were used to discuss the droplet force and energy conversion characteristics respectively. Results showed that the TW-GIA metal transfer modes can be divided into: short-circuit transfer (SCT), main wire projected transfer + side wire globular transfer (PGT), main wire streaming transfer + side wire projected transfer (SPT) and main wire streaming transfer + side wire streaming transfer (SST). Moreover, the process parameter ranges corresponding to the four modes were summarized. Due to the stable arc and the uniform metal transfer process, SPT and SST can form desirable weld seam. The gravity and z-axis components of electromagnetic force are the main forces that promote metal transfer. The x-axis and y-axis components of the electromagnetic force deviate the metal transfer path from the arc coverage. Due to the change of arc conductive channel, the energy transferred from TW-GIA to the base metal is less than that of GMAW, showing the advantages of small welding deformation, narrow heat affected zone and grain refinement.


2013 ◽  
Vol 477-478 ◽  
pp. 1369-1372 ◽  
Author(s):  
Yong Wang ◽  
Ying Qiao Zhang ◽  
Bao Wang ◽  
Zhi Jun Wang

The metal transfer behaviors of basic flux cored wire at different arc voltage and welding current and the resultant welding spatter were investigated by using a high speed camera. Two modes of metal transfer are found: globular repelled transfer (lower welding parameters) and small droplet transfer (higher welding parameters). The former is accompanied by large granular spatter, large droplet itself explosion spatter and electric explosive spatter of short-circuit, and spatter in the latter is reduced obviously. But if the slag column is found in the two models, spatter could be dropped evidently owing to its significant guiding role for metal transfer. Therefore the slag column is the key factor of reducing welding spatter.


Sign in / Sign up

Export Citation Format

Share Document