Comparison of Residual Stress Between MIG Welding and Friction Stir Welding

2012 ◽  
Vol 155-156 ◽  
pp. 1218-1222
Author(s):  
Lei Wang ◽  
Mitsuyosi Tsunori

Residual stress distribution plays a very important role in welded structures, the aim of present work is to find out the effect of different welding methods on the residual stress distribution by means of neutron diffraction measurements and FE models simulation. 4 mm thick DH-36 steel plates were butt welded by MIG welding process and 5 mm thick AA 2024 aluminium alloy plates were butt welded by friction stir welding process. Results show that residual stresses of MIG welding process are higher than those of friction stir welding process. The peak residual stress of MIG weld is close to the room temperature uniaxial yield strength of DH-36 while the peak residual stress of friction stir weld is just about 50% of the room temperature uniaxial yield strength of AA2024. The size effect of MIG welded and effect of welding speeds of friction stir welded on the residual stress distribution have also been studied in the paper.

Author(s):  
R. W. McCune ◽  
A. Murphy ◽  
M. Price ◽  
J. Butterfield

The ability to accurately predict residual stresses and resultant distortions is a key product from process assembly simulations. Assembly processes necessarily consider large structural components potentially making simulations computationally expensive. The objective herein is to develop greater understanding of the influence of friction stir welding process idealization on the prediction of residual stress and distortion and thus determine the minimum required modeling fidelity for future airframe assembly simulations. The combined computational and experimental results highlight the importance of accurately representing the welding forging force and process speed. In addition, the results emphasize that increased CPU simulation times are associated with representing the tool torque, while there is potentially only local increase in prediction fidelity.


2020 ◽  
Vol 26 ◽  
pp. 2296-2301 ◽  
Author(s):  
Smrity Choudhury ◽  
Tanmoy Medhi ◽  
Durjyodhan Sethi ◽  
Sanjeev Kumar ◽  
Barnik Saha Roy ◽  
...  

2013 ◽  
Vol 554-557 ◽  
pp. 2237-2242 ◽  
Author(s):  
Rui Miguel Ferreira Paulo ◽  
Pierpaolo Carlone ◽  
Robertt A.F. Valente ◽  
Filipe Teixeira-Dias ◽  
Gaetano S. Palazzo

Stiffened panels are usually the basic structural building blocks of airplanes, vessels and other structures with high requirements of strength-to-weight ratio. They typically consist of a plate with equally spaced longitudinal stiffeners on one side, often with intermediate transverse stiffeners. Large aeronautical and naval parts are primarily designed based on their longitudinal compressive strength. The structural stability of such thin-walled structures, when subjected to compressive loads, is highly dependent on the buckling strength of the structure as a whole and of each structural member. In the present work, a number of modelling and numerical calculations, based on the Finite Element Method (FEM), is carried out in order to predict the ultimate load level when stiffened panels are subjected to compressive solicitations. The simulation models account not only for the elasto-plastic nonlinear behaviour, but also for the residual stresses, material properties modifications and geometrical distortions that arise from Friction Stir Welding (FSW) operations. To construct the model considering residual stresses, their distribution in FSW butt joints are obtained by means of a numerical-experimental procedure, namely the contour method, which allows for the evaluation of the normal residual stress distribution on a specimen section. FSW samples have been sectioned orthogonally to the welding line by wire electrical discharge machining (WEDM). Displacements of the relaxed surfaces are then recorded using a Coordinate Measuring Machine and processed in a MATLAB environment. Finally, the residual stress distribution is evaluated by means of an elastic FE model of the cut sample, using the measured and digitalized out-of-plane displacements as input nodal boundary conditions. With these considerations, the main goal of the present work will then be related to the evaluation of the effect of FSW operations, in the ultimate load of stiffened panels with complex cross-section shapes, by means of realist numerical simulation models.


2016 ◽  
Vol 693 ◽  
pp. 1339-1345
Author(s):  
Hong Feng Wang ◽  
J.L. Wang ◽  
W.W. Song ◽  
Dun Wen Zuo ◽  
Q.Q. Zhu

In this paper, the dynamometer for measuring the forces of the tool in FSW process was designed. The design principle of the dynamometer was adopted octagonal ring deformation to get the forces in FSW process. The design dynamometer was calibrated, the result showed the linearity and cross sensitivity of the dynamometer in allowed range, the worked reliable of the dynamometer was good. It can be used to measure the forces in FSW process.


Sign in / Sign up

Export Citation Format

Share Document