A New Type of Parallel Robot Manipulator Kinematics Simulation and Analysis of Movement Characteristics

2009 ◽  
Vol 16-19 ◽  
pp. 1294-1298 ◽  
Author(s):  
Ji Man Luo ◽  
Li Na Cong ◽  
Tian Fang

Kinematics simulation and characteristics of a new type of parallel robot manipulator (PRM) with two-dimension movement and one-dimension rotation are analyzed. The new PRM is proved to can realize expected movement, and have smooth movement curves of displacement and velocity. The moving platform center of the PRM can achieve a wide range of swing, and has a larger working space. According to the kinematics theory, the working space and singularity characteristic are analyzed. Simulation and analysis indicated that the working space of the new PRM in the form and position is not singular, and has good maneuverability, thus providing the foundation for practice application and product exploitation.

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas Baron ◽  
Andrew Philippides ◽  
Nicolas Rojas

This paper presents a novel kinematically redundant planar parallel robot manipulator, which has full rotatability. The proposed robot manipulator has an architecture that corresponds to a fundamental truss, meaning that it does not contain internal rigid structures when the actuators are locked. This also implies that its rigidity is not inherited from more general architectures or resulting from the combination of other fundamental structures. The introduced topology is a departure from the standard 3-RPR (or 3-RRR) mechanism on which most kinematically redundant planar parallel robot manipulators are based. The robot manipulator consists of a moving platform that is connected to the base via two RRR legs and connected to a ternary link, which is joined to the base by a passive revolute joint, via two other RRR legs. The resulting robot mechanism is kinematically redundant, being able to avoid the production of singularities and having unlimited rotational capability. The inverse and forward kinematics analyses of this novel robot manipulator are derived using distance-based techniques, and the singularity analysis is performed using a geometric method based on the properties of instantaneous centers of rotation. An example robot mechanism is analyzed numerically and physically tested; and a test trajectory where the end effector completes a full cycle rotation is reported. A link to an online video recording of such a capability, along with the avoidance of singularities and a potential application, is also provided.


Robotica ◽  
2010 ◽  
Vol 29 (3) ◽  
pp. 461-470 ◽  
Author(s):  
Levent Gümüşel ◽  
Nurhan Gürsel Özmen

SUMMARYIn this study, modelling and control of a two-link robot manipulator whose first link is rigid and the second one is flexible is considered for both land and underwater conditions. Governing equations of the systems are derived from Hamilton's Principle and differential eigenvalue problem. A computer program is developed to solve non-linear ordinary differential equations defining the system dynamics by using Runge–Kutta algorithm. The response of the system is evaluated and compared by applying classical control methods; proportional control and proportional + derivative (PD) control and an intelligent technique; integral augmented fuzzy control method. Modelling of drag torques applied to the manipulators moving horizontally under the water is presented. The study confirmed the success of the proposed integral augmented fuzzy control laws as well as classical control methods to drive flexible robots in a wide range of working envelope without overshoot compared to the classical controls.


2007 ◽  
Vol 9 (2) ◽  
pp. 5-9 ◽  
Author(s):  
Roland Milker ◽  
Zbigniew Czech ◽  
Marta Wesołowska

Synthesis of photoreactive solvent-free acrylic pressure-sensitive adhesives in the recovered system The present paper discloses a novel photoreactive solvent-free acrylic pressure-sensitive adhesive (PSA) systems, especially suitable for the so much adhesive film applications as the double-sided, single-sided or carrier-free technical tapes, self-adhesive labels, protective films, marking and sign films and wide range of medical products. The novel photoreactive solvent-free pressure-sensitive adhesives contain no volatile organic compounds (residue monomers or organic solvent) and comply with the environment and legislation. The synthesis of this new type of acrylic PSA is conducted in common practice by solvent polymerisation. After the organic solvent are removed, there remains a non-volatile, solvent-free highly viscous material, which can be processed on a hot-melt coating machine at the temperatures of about 100 to 140°C.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ali T. Hasan

This paper is devoted to solve the positioning control problem of underactuated robot manipulator. Artificial Neural Networks Inversion technique was used where a network represents the forward dynamics of the system trained to learn the position of the passive joint over the working space of a 2R underactuated robot. The obtained weights from the learning process were fixed, and the network was inverted to represent the inverse dynamics of the system and then used in the estimation phase to estimate the position of the passive joint for a new set of data the network was not previously trained for. Data used in this research are recorded experimentally from sensors fixed on the robot joints in order to overcome whichever uncertainties presence in the real world such as ill-defined linkage parameters, links flexibility, and backlashes in gear trains. Results were verified experimentally to show the success of the proposed control strategy.


1993 ◽  
Vol 115 (2) ◽  
pp. 307-311 ◽  
Author(s):  
S. Yoshimoto ◽  
Y. Anno ◽  
M. Fujimura

This paper proposes a new type of a self-controlled restrictor which can achieve a very high bearing stiffness in hydrostatic bearings. This self-controlled restrictor employs a floating disk to control the mass flow rate of the oil entering the bearing clearance according to changes of the applied load. Furthermore, a hydrostatic bearing with this restrictor can theoretically achieve an infinite stiffness when the mass of a floating disk is assumed to be zero. The static characteristics of a rectangular hydrostatic thrust bearing with this self-controlled restrictor are theoretically and experimentally investigated. It was consequently shown that the proposed hydrostatic thrust bearing can achieve a very high stiffness (nearly infinite stiffness) in a very wide range of applied load independent of supply pressure.


Sign in / Sign up

Export Citation Format

Share Document