Seismic Behavior of Reinforced Concrete Frame Columns with Different Volumetric Percentage of Stirrups

2012 ◽  
Vol 166-169 ◽  
pp. 2046-2049 ◽  
Author(s):  
Shan Suo Zheng ◽  
Yue Heng Yan ◽  
Qing Lin Tao ◽  
Wen Yong Li

Based on the experiments of a reinforced concrete frame column, 5 new members with different volumetric percentage of stirrups which are applied with constant axial load and horizontal low-frequency cyclic load are analyzed with ABAQUS. This paper aims to study the relationship between volume-stirrup ratio and seismic behavior of reinforced concrete column. By analyzing skeleton curve and hysteretic curve of members, the results show that, if stirrups are reasonably arranged and the volume-stirrup ratio is larger enough, the good ductility, carrying capacity, energy dissipation capacity, and seismic behavior still be obtained with high axial compression ratio.

2016 ◽  
Vol 20 (7) ◽  
pp. 1125-1138 ◽  
Author(s):  
Jing Yu ◽  
Xiaojun Liu ◽  
Xingwen Liang

A new model that can simulate the behavior of construction joint subjected to seismic forces was proposed. Nonlinear time-history analysis was carried out for reinforced concrete regular frame structures designed in different seismic intensity regions as well as with different height-to-width ratios. Two kinds of numerical models are adopted to simulate the seismic behavior of each frame, one with construction joint using the new proposed model and the other without construction joint using the conventional model. Results show that the influence of construction joint on the seismic behavior of reinforced concrete frame is strongly related to structural nonlinearity. It may increase the top displacement and the inter-story drift, change the inter-story drift distributions, and exacerbated the local reaction of key members. The influence of construction joint cannot be ignored for structures with low emergency capacity against major earthquake. Seismic design suggestions are proposed from the aspect of calculation analysis method.


Author(s):  
Lida Mottaghi ◽  
Ramezan Ali Izadifard ◽  
Ali Kaveh

Nowadays, reduction of greenhouse gases emissions from the construction industry is seriously under investigation. The aim of this study is to investigate the various effective factors on the relationship between optimal cost and optimal carbon dioxide emissions of the reinforced concrete structures with nonlinear structural behavior. A four-story reinforced concrete frame is designed for various peak ground accelerations (PGAs) and all ductility classes according to Iran’s seismic resistant design-2800 code, as well as for different concrete classes. The frames are optimally designed according to ACI 318-08 and FEMA codes. The results of optimal designs show that the design of structures with medium and high ductility class produces less cost and CO2 emissions than the low ductility class. On the other hand, the relationship between cost and CO2 emissions shows that in the low ductility class, increasing the percentage of the optimal cost can greatly reduce the amount of CO2 emissions. PGA design has a significant effect on reducing optimal cost and CO2 emissions. Especially in the low ductility class, reducing this parameter can greatly decrease the amount of the objective functions. Also, the use of concrete with low class can reduce the cost and CO2 emissions but the effect of this parameter in the objective is very small.


Author(s):  
Anatoliy I. Bedov ◽  
Aleksandr S. Salov ◽  
Azat I. Gabitov ◽  
Dmitriy М. Kuznetsov ◽  
Elza A. Sadykova

The areas of application of concrete and reinforcement of higher grades for strength in structural elements of a monolithic reinforced concrete frame are considered. Analytic dependencies, criteria and boundary conditions are proposed that numerically describe the relationship between increasing the strength of concrete and reducing the consumption of reinforcing steel for bent and compressed-bent elements. Calculation-analytical models of the deformation state of overlaps of a monolithic reinforced concrete multi-storey frame have been developed on the basis of multifactor numerical studies carried out for various values of the thicknesses of ceilings, spans, operating loads, classes of concrete and reinforcement. Calculated parameters of slabs are determined, which determine their bearing capacity. On the basis of computer technology, the optimum section of a reinforced concrete element is modeled according to the criterion of reducing the material consumption and rational combination of classes of concrete and reinforcement.


Sign in / Sign up

Export Citation Format

Share Document