Study on Composite Soil Nailing Wall in Soft Soil Area of Complex Condition with Emphasis on Analysis by Finite Element Analysis

2012 ◽  
Vol 174-177 ◽  
pp. 2020-2023 ◽  
Author(s):  
Bing Wang

Based on a typical projects, the horizontal displacement in depth, horizontal displacement and vertical subsidence of pile top, and settlements of surrounding buildings are monitored with the process on digging of deep foundation pit. The study on digging process of foundation pit is analyzed by using finite element software. Using mapped meshing method, from mixing the pile near the semi-circular area (radius = 50m), the meshing appropriate encryption in order to improve the accuracy of the external semi-circular area (radius = 65m) mesh is less appropriate sparse.Layer by layer to kill the layers of the soil unit and activate the soil nails (spring element), the simulated excavation and synchronization of soil nails construction.Verify the arc form of failure surface in side of deep foundation pit in soft soil area. Which is valuable for reference to similar structure engineering of foundation pit.

2012 ◽  
Vol 256-259 ◽  
pp. 1908-1911 ◽  
Author(s):  
Xi Yuan Liu ◽  
Wen Peng Cai ◽  
Ji Zhou ◽  
Xin Yan Wang

Ring-beam supporting technology is increasingly used in coastal soft soil area. Based on a foundation pit supporting case of general hospital in Tianjin, the 3-dim finite element construction was simulated with MIDAS/GTS. According to the calculation, the stress and deformation characteristics of deep foundation pit supporting structure under the ring-beam action in soft soil area, and the surrounding soil settlement is analyzed. The final foundation pit supporting solution is selected between two different schemes. The analysis method and conclusions are useful for design and construction of other similar projects.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhongjing Hu ◽  
Qingbiao Wang ◽  
Shuo Yang ◽  
Zhenyue Shi ◽  
Bo Liu ◽  
...  

Advancing urbanization in China requires large-scale high-rise construction and underground transportation projects. Consequently, there is an increasing number of deep foundation pits adjacent to water bodies, and accidents occur frequently. This study uses a numerical simulation method to study the stability of the deep foundation pit near water based on the Biot three-dimensional seepage-stress coupling model, with the open-cut section on the south bank of the Jinan Yellow River Tunnel Project as the engineering field test. This indicates the following: (1) the maximum horizontal displacement of the diaphragm wall occurred in the fifth excavation stage, and a horizontal brace effectively controlled the inward horizontal displacement of the foundation pit; (2) considering the effect of seepage in the soft soil foundation, the maximum vertical displacement of the ground surface at each excavation stage occurred adjacent to the underground continuous wall. As the depth of the foundation pit increased, the vertical surface settlement decreases gradually in the direction away from the excavation face; (3) considering the seepage conditions, within each interval of excavation of the foundation pit, the horizontal displacement of the continuous underground wall and ground settlement declined; and (4) the numerical simulation and field monitoring data were in good agreement. Under the conditions of accurate model simplification and parameter selection, numerical simulations can adequately forecast conditions of the actual project.


Sign in / Sign up

Export Citation Format

Share Document