Study on Seismic Strengthening Demand of Damage Concrete Bridge Piers

2012 ◽  
Vol 178-181 ◽  
pp. 2070-2074 ◽  
Author(s):  
Jiang Dong Deng ◽  
Zhou Hong Zong ◽  
Zhang Hua Xia

Initial damage often exists in the concrete piers of bridges in service. In this paper numerical analysis was used to study the seismic strengthening behavior of concrete bridge piers with different bending damage degrees, including seismic forces, pier top displacements, steel bar strain and energy dissipation, in order to obtain the strengthening demand to repair the damage piers. The results showing that: initial bending damage reduced the seismic force, increased the pier top displacements and the steel bar strain. After strengthening the pier top displacements and steel bar strain at the pier bottom decreased, energy dissipation increased, and the anti-seismic properties of damage piers effectively recovered, but the increase of the seismic force might make new plastic-hinges out the strengthened area. At last according to the mechanics properties the strengthening demand under different bending damage degrees was given.

2021 ◽  
Vol 11 (6) ◽  
pp. 2652
Author(s):  
Jung Han Kim ◽  
Ick-Hyun Kim ◽  
Jin Ho Lee

When a seismic force acts on bridges, the pier can be damaged by the horizontal inertia force of the superstructure. To prevent this failure, criteria for seismic reinforcement details have been developed in many design codes. However, in moderate seismicity regions, many existing bridges were constructed without considering seismic detail because the detailed seismic design code was only applied recently. These existing structures should be retrofitted by evaluating their seismic performance. Even if the seismic design criteria are not applied, it cannot be concluded that the structure does not have adequate seismic performance. In particular, the performance of a lap-spliced reinforcement bar at a construction joint applied by past practices cannot be easily evaluated analytically. Therefore, experimental tests on the bridge piers considering a non-seismic detail of existing structures need to be performed to evaluate the seismic performance. For this reason, six small scale specimens according to existing bridge piers were constructed and seismic performances were evaluated experimentally. The three types of reinforcement detail were adjusted, including a lap-splice for construction joints. Quasi-static loading tests were performed for three types of scale model with two-column piers in both the longitudinal and transverse directions. From the test results, the effect on the failure mechanism of the lap-splice and transverse reinforcement ratio were investigated. The difference in failure characteristics according to the loading direction was investigated by the location of plastic hinges. Finally, the seismic capacity related to the displacement ductility factor and the absorbed energy by hysteresis behavior for each test were obtained and discussed.


2021 ◽  
Vol 44 ◽  
pp. 2393-2398
Author(s):  
Rajib Kumar Biswas ◽  
Mistuyasu Iwanami ◽  
Nobuhiro Chijiwa ◽  
Kazuhide Nakayama

Sign in / Sign up

Export Citation Format

Share Document