The Application of Nanofiltration Technology in Recovery of Ionic Liquids from Spinning Wastewater

2012 ◽  
Vol 178-181 ◽  
pp. 499-502 ◽  
Author(s):  
Xi Liu ◽  
Wei Wang

In this paper, the effects of the concentration, temperature, and run-time of ionic liquids solution, on the rejection capacity of home-made hollow fiber composite nanofiltration membrane were studied. Then the nanofiltration membrane was used to the recover ionic liquids by concentrating spinning wastewater. The results shows that: The rejection rate of the composite nanofiltration membranes and its water fluxes lightly down with the concentration of ionic liquids increase; with running-time and temperature of ionic liquid solution increase, the rejection rate of the composite nanofiltration membranes decreases, but its water flux increases; the nanofiltration membrane can be use for recovering ionic liquid from the spinning wastewater and get very good recovery effects.

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7159
Author(s):  
Rita F. Rodrigues ◽  
Adilson A. Freitas ◽  
José N. Canongia Lopes ◽  
Karina Shimizu

Many chemical processes rely extensively on organic solvents posing safety and environmental concerns. For a successful transfer of some of those chemical processes and reactions to aqueous media, agents acting as solubilizers, or phase-modifiers, are of central importance. In the present work, the structure of aqueous solutions of several ionic liquid systems capable of forming multiple solubilizing environments were modeled by molecular dynamics simulations. The effect of small aliphatic chains on solutions of hydrophobic 1-alkyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide ionic liquids (with alkyl = propyl [C3C1im][NTf2], butyl [C4C1im][NTf2] and isobutyl [iC4C1im][NTf2]) are covered first. Next, we focus on the interactions of sulphonate- and carboxylate-based anions with different hydrogenated and perfluorinated alkyl side chains in solutions of [C2C1im][CnF2n+1SO3], [C2C1im][CnH2n+1SO3], [C2C1im][CF3CO2] and [C2C1im][CH3CO2] (n = 1, 4, 8). The last system considered is an ionic liquid completely miscible with water that combines the cation N-methyl-N,N,N-tris(2-hydroxyethyl)ammonium [N1 2OH 2OH 2OH]+, with high hydrogen-bonding capability, and the hydrophobic anion [NTf2]–. The interplay between short- and long-range interactions, clustering of alkyl and perfluoroalkyl tails, and hydrogen bonding enables a wealth of possibilities in tailoring an ionic liquid solution according to the needs.


2015 ◽  
Vol 44 (25) ◽  
pp. 11286-11289 ◽  
Author(s):  
Stephen J. Osborne ◽  
Sil Wellens ◽  
Chris Ward ◽  
Solveig Felton ◽  
Robert M. Bowman ◽  
...  

Temperature-dependent switching of paramagnetism of a cobalt(ii) complex is observed in an ionic liquid solution.


2016 ◽  
Vol 18 (5) ◽  
pp. 1261-1267 ◽  
Author(s):  
Rupali K. Desai ◽  
Mathieu Streefland ◽  
Rene H. Wijffels ◽  
Michel H. M. Eppink

Pre-treatment of H. pluvialis with an aqueous ionic liquid solution permeabilises the cell wall and astaxanthin can be subsequently extracted with ethyl acetate without mechanical disruption.


Membranes ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 87 ◽  
Author(s):  
Daria Nevstrueva ◽  
Arto Pihlajamäki ◽  
Juha Nikkola ◽  
Mika Mänttäri

Supported cellulose ultrafiltration membranes are cast from a cellulose-ionic liquid solution by the immersion precipitation technique. The effects of coagulation bath temperature and polymer concentration in the casting solution on the membrane morphology, wettability, pure water flux, molecular weight cut-off, and fouling resistance are studied. Scanning electron microscopy, contact angle measurements, atomic force microscopy, and filtration experiments are carried out in order to characterise the obtained ultrafiltration cellulose membranes. The results show the effect of coagulation bath temperature and polymer concentration on the surface morphology and properties of cellulose ultrafiltration membranes. Optimisation of the two parameters leads to the creation of dense membranes with good pure water fluxes and proven fouling resistance towards humic acid water solutions.


2012 ◽  
Vol 30 (7) ◽  
pp. 735-747 ◽  
Author(s):  
M. E. Mincher ◽  
D. L. Quach ◽  
Y. J. Liao ◽  
B. J. Mincher ◽  
C. M. Wai

Sign in / Sign up

Export Citation Format

Share Document