Calculation and Optimization of Molten Salt for Solar High Temperature Heat Storage

2012 ◽  
Vol 178-181 ◽  
pp. 62-65
Author(s):  
Qiu Hui Yan ◽  
Hong Na Wang

The development of energy saving technologies is very actual issue of present day. One of perspective directions in developing these technologies is the thermal energy storage in various industry branches. To meet the requirement of high temperature of solar heat transfer and thermal storage, this paper calculated several sets of data for lots of pure salts and salt mixtures. The results show that, comparing with the ternary carbonate salt (potassium carbonate (0.7) - sodium carbonate (0.1) -potassium chloride (or sodium chloride)), the ternary chloride salt (potassium chloride (0.037) - calcium chloride (0.5) - sodium chloride) is more perspective.

2020 ◽  
Vol 209 ◽  
pp. 110415 ◽  
Author(s):  
Wenjun Xie ◽  
Jing Ding ◽  
Gechuanqi Pan ◽  
Qianmei Fu ◽  
Xiaolan Wei ◽  
...  

2016 ◽  
Author(s):  
Qasim A. Ranjha ◽  
Nasser Vahedi ◽  
Alparslan Oztekin

Thermal energy storage units are vital for development of the efficient solar power generation systems due to fluctuating nature of daily and seasonal solar radiations. Two available efficient and practical options to store and release solar energy at high temperatures are latent heat storage and thermochemical storage. Latent heat storage can operate only at single phase change temperature. This problem can be avoided by some of the thermochemical storage systems in which solar energy can be stored and released over a range of high temperature by endothermic and exothermic reactions. One such reaction system is reversible reaction involving dehydration of Ca(OH)2 and hydration of CaO. This system is considered in the present study to model a circular fixed bed reactor for storage and release of heat at high temperatures. Air is used as heat transfer fluid (HTF) flowing in an annular shell outside the bed for charging and discharging the bed. The bed is filled with CaO/Ca(OH)2 powders with particles diameter of the order 5μm. Three dimensional transient model has been developed and simulations are performed using finite elements based COMSOL Multiphysics. Conservation of mass and energy equations, coupled with reaction kinetics equations, are solved in the three dimensional porous bed and the heat transfer fluid channel. Parametric study is performed by varying HTF parameters, bed dimensions and process conditions. The results are verified through a qualitative comparison with experimental and simulation results in the literature for similar geometric configurations.


Author(s):  
Ghazal Dehghani ◽  
Xiankun Xu ◽  
Peiwen Li

Concentrated solar power (CSP) technologies tend to work at more and more high temperatures, which correspondingly need a high temperature heat transfer fluid (HTF) to transmit the heat from solar concentrator to power plant. The objective of this work is to study heat capacities of a HTF which can work at upper limit temperature of around 850 °C. The ideal HTF should have low melting temperature and be thermally stable at high temperatures. High specific heat capacity is also favorable. The eutectic ternary salt mixtures studied in this work are formed by NaCl, KCl and ZnCl2. The heat capacity, heat of fusion, and melting temperatures of three salt mixtures were measured by using Differential Scanning Calorimetry (DSC)/Thermal Gravimetric Analysis (TGA) simultaneously. The accuracy of the measurements was validated by measuring three metals, Indium, Tin, and Zinc, which have standard reference data. Each of the three eutectic mixtures by NaCl-KCl-ZnCl2 ternary system had 10 to 11 samples tested for heat of fusion, the melting point, and heat capacity. Mixing rule from literature was used to estimate the heat capacity of the new HTF, which showed very good agreement to experimental data.


2020 ◽  
Author(s):  
Victorien Djotsa Nguimeya Ngninjio ◽  
Bo Wang ◽  
Christof Beyer ◽  
Sebastian Bauer

<p>Seasonal or sub-seasonal large scale heat storage will be required for a switch of the heating market to renewable heat sources, due to the seasonality of the heating demand. Subsurface high-temperature heat storage (up to 90°C) is investigated here as a promising option for urban areas with strong land use pressure, as this technology provides the required high capacities. Surplus heat originating from solar thermal installations or industrial production can be stored and later on used when the heat demand is high. One technology option available is borehole thermal energy storage using borehole heat exchangers (BHE) to store the heat in the geological subsurface. However, storing heat at high temperatures in porous media can trigger convective density-driven flow. This interacting transport of heat and water may affect the storage efficiency of such storage systems. In this study, therefore, lab-scale experiments are numerically designed and experimentally conducted in order to identify, characterize and quantify the induced convective heat transport process at different storage temperatures.</p><p>A lab-scale analogon of a heat storage is constructed in a PP plastic barrel of 1.23 m height and 1.2 m diameter, consisting of water saturated homogeneous sand medium, with a hydraulic permeability of about 2.9x10<sup>-10</sup> m² and a thermal conductivity of 2.042 W/m/K. Coupled thermo-hydraulic process simulation applying OpenGeoSys was used to design and optimize the experimental set-up and the test cycles. Hot water is circulated in a coaxial BHE at 70°C for seven days to heat the storage medium, while tab water is used to recover the stored heat. The side of the barrel is cooled using ventilators while the top and bottom of the barrel are insulated.</p><p>The experimental results show that after four days of heat injection, a steady state temperature distribution is reached. The temperature distribution in the storage medium is vertically stratified with an average temperature approximately 39°C and 26°C in the upper and lower part, respectively. Thus the centre of the mass of stored heat is shifted to the top part of the storage medium, and a larger convection cell is formed, with water rising at the BHE in the middle and sinking at the barrel wall. The vertical temperature gradient decreases from the grout surface to the barrel wall with a rate of 0.153 K/m. The decreasing rate of the radial temperature gradient from the upper to the lower part of the sand medium is 0.174 K/m. The Rayleigh number, which characterizes the magnitude of the convective heat transfer, is about 44.15 for this experiment and thus greater than the critical value. Heat transfer process in the sand medium hence is influenced by density driven convective flow. Additional laboratory experiments at inlet temperatures of 30°C, 50°C, and 90°C show an increase of convective heat transfer with increasing temperature.</p><p>The numerical model qualitatively reproduces the convective heat transfer within the storage. An inverse model adaption is currently carried out to determine the effective heat transfer parameters for the storage components and to quantitatively fit the experimentally observed temperature distributions.</p>


Sign in / Sign up

Export Citation Format

Share Document