Study of FCLSD Algorithm Performance Based on LTE System

2012 ◽  
Vol 195-196 ◽  
pp. 96-103
Author(s):  
Ke Wen Liu ◽  
Quan Liu

Soft-output complex list sphere decoding algorithm is a low-complexity MIMO detection algorithm and its BER performance approximates that of Maximum-Likelihood. However, it has a problem of not fixed complexity, and which make it very difficult to implement. To resolve this and try best to retain the advantages of the algorithm, a modified algorithmfixed complex list sphere decoding algorithm was proposed. Based on LTE TDD system, this paper studies the performance of the FCLSD algorithm. The simulation results show that: the BER performance of the FCLSD algorithm is close to that of the CLSD algorithm. However, when the number of antennas and modulation order increasing, the FCLSD algorithm is non-constrained of spherical radius and has fixed complexity. In addition, hardware implementation of the FCLSD algorithm could be carried out by parallel processing, thereby greatly reducing the algorithm complexity. So it is a high-performance algorithm of great potential.

2013 ◽  
Vol 765-767 ◽  
pp. 611-614
Author(s):  
Qin Zhu ◽  
Xiao Wen Li

In the long-term evolution (LTE) system, channel equalization makes compensation to restore the original signal, the paper puts forward iteration sphere decoding algorithm which combines traditional sphere decoding and the improved QR based on the conventional QR decomposition detection algorithm. It can effectively reduce the system complexity. At the same time, in QPSK and 16QAM, the simulation results show that the improved QR iterative sphere decoding algorithm performance is better with higher SNR in AWGN channel.


2011 ◽  
Vol 271-273 ◽  
pp. 458-463
Author(s):  
Rui Ping Chen ◽  
Zhong Xun Wang ◽  
Xin Qiao Yu

Decoding algorithms with strong practical value not only have good decoding performance, but also have the computation complexity as low as possible. For this purpose, the paper points out the modified min-sum decoding algorithm(M-MSA). On the condition of no increasing in the decoding complexity, it makes the error-correcting performance improved by adding the appropriate scaling factor based on the min-sum algorithm(MSA), and it is very suitable for hardware implementation. Simulation results show that this algorithm has good BER performance, low complexity and low hardware resource utilization, and it would be well applied in the future.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 980 ◽  
Author(s):  
Hui Feng ◽  
Xiaoqing Zhao ◽  
Zhengquan Li ◽  
Song Xing

In this paper, a novel iterative discrete estimation (IDE) algorithm, which is called the modified IDE (MIDE), is proposed to reduce the computational complexity in MIMO detection in uplink massive MIMO systems. MIDE is a revision of the alternating direction method of multipliers (ADMM)-based algorithm, in which a self-updating method is designed with the damping factor estimated and updated at each iteration based on the Euclidean distance between the iterative solutions of the IDE-based algorithm in order to accelerate the algorithm’s convergence. Compared to the existing ADMM-based detection algorithm, the overall computational complexity of the proposed MIDE algorithm is reduced from O N t 3 + O N r N t 2 to O N t 2 + O N r N t in terms of the number of complex-valued multiplications, where Ntand Nr are the number of users and the number of receiving antennas at the base station (BS), respectively. Simulation results show that the proposed MIDE algorithm performs better in terms of the bit error rate (BER) than some recently-proposed approximation algorithms in MIMO detection of uplink massive MIMO systems.


2005 ◽  
Vol 40 (7) ◽  
pp. 1566-1577 ◽  
Author(s):  
A. Burg ◽  
M. Borgmann ◽  
M. Wenk ◽  
M. Zellweger ◽  
W. Fichtner ◽  
...  

2012 ◽  
Vol 239-240 ◽  
pp. 911-914
Author(s):  
Zhong Xun Wang ◽  
Shuang Shuang Yin

An improved codeword construction method was used to encode the BCH code and LDPC code in this paper according to the latest standard defined by digital video broadcasting standard(DVB), and moreover the data overflow problem was solved. The LDPC code was decoded by the reduced complexity Min-Sum decoding algorithm, in which the coefficient was studied. Fixed-point representation and decoder quantization were proposed and simulation results show that 6-bits and 16-bits uniform quantization can make close to the performance of unquantized decoder, which reduces the decoder complexity for hardware implementation.


2011 ◽  
Vol 128-129 ◽  
pp. 7-10
Author(s):  
Zhong Xun Wang ◽  
Xing Cheng Wang ◽  
Fang Qiang Zhu

We researched BP decoding algorithm based on variable-to-check information residual for LDPC code (VC-RBP) in this paper. It is a dynamic scheduling belief propagation using residuals, and has some advantages,such as fast decoding, good performance, and low complexity. It is similar to residual belief propagation (RBP),but has some difference in computing the residual message. This paper further optimized the new algorithm on DSP of TMS320dm6446, and it is good for hardware implementation.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 93
Author(s):  
Yuhuan Wang ◽  
Jianguo Li ◽  
Neng Ye ◽  
Xiangyuan Bu

The parallel nature of the belief propagation (BP) decoding algorithm for polar codes opens up a real possibility of high throughput and low decoding latency during hardware implementation. To address the problem that the BP decoding algorithm introduces high-complexity non-linear operations in the iterative messages update process, this paper proposes to simplify these operations and develops two novel low complexity BP decoding algorithms, namely, exponential BP (Exp-BP) decoding algorithm and quantization function BP (QF-BP) decoding algorithm. The proposed algorithms simplify the compound hyperbolic tangent function by using probability distribution fitting techniques. Specifically, the Exp-BP algorithm simplifies two types of non-linear operations into single non-linear operation using the piece-wise exponential model function, which can approximate the hyperbolic tangent function in the updating formula. The QF-BP algorithm eliminates non-linear operations using the non-uniform quantization in the updating formula, which is effective in reducing computational complexity. According to the simulation results, the proposed algorithms can reduce the computational complexity up to 50% in each iteration with a loss of less than 0.1 dB compared with the BP decoding algorithm, which can facilitate the hardware implementation.


Sign in / Sign up

Export Citation Format

Share Document