A Novel Cluster Head Selection Algorithm Based on Energy Consumption for LEACH

2012 ◽  
Vol 198-199 ◽  
pp. 1389-1394
Author(s):  
Wen Hao Li ◽  
Shao Chuan Wu ◽  
Liang Ye ◽  
Shuo Shi

Wireless sensor networks are widely deployed in various areas of our daily life. The lifetime of wireless sensor networks takes significant effect in the performance of the whole network. Many network protocols are proposed to improve the lifetime of networks, and among them, low-energy adaptive clustering hierarchy (LEACH) is a promising protocol with self-organization of the clusters and periodic rotation of cluster heads selection to distribute energy consumption uniformly. LEACH performs well compared with other protocols on lifetime while it is simplified and has aspects to improve. In this paper, we modified the procedure of cluster heads selection in LEACH and proposed a protocol LEACH-CHE with consideration on the energy consumption of cluster heads. We analyzed LEACH-CHE and with the results of simulations, LEACH-CHE over performs on network lifetime compared with the original LEACH.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jun Wang ◽  
Zhuangzhuang Du ◽  
Zhengkun He ◽  
Xunyang Wang

Balancing energy consumption using the clustering routing algorithms is one of the most practical solutions for prolonging the lifetime of resource-limited wireless sensor networks (WSNs). However, existing protocols cannot adequately minimize and balance the total network energy dissipation due to the additional tasks of data acquisition and transmission of cluster heads. In this paper, a cluster-head rotating election routing protocol is proposed to alleviate the problem. We discovered that the regular hierarchical clustering method and the scheme of cluster-head election area division had positive effects on reducing the energy consumption of cluster head election and intracluster communication. The election criterion composed of location and residual energy factor was proved to lower the probability of premature death of cluster heads. The chain multihop path of intercluster communication was performed to save the energy of data aggregation to the base station. The simulation results showed that the network lifetime can be efficiently extended by regulating the adjustment parameters of the protocol. Compared with LEACH, I-LEACH, EEUC, and DDEEC, the algorithm demonstrated significant performance advantages by using the number of active nodes and residual energy of nodes as the evaluation indicators. On the basis of these results, the proposed routing protocols can be utilized to increase the capability of WSNs against energy constraints.


2020 ◽  
Vol 17 (6) ◽  
pp. 2658-2663
Author(s):  
Anju Rani ◽  
Amit Kumar Bindal

Presently, Wireless Sensor Networks (WSNs) is quickest developing technology which broadly embracing for different application services including; climate observing, traffic expectation, reconnaissance, research and scholastic fields and so on. As the sensor nodes are haphazardly conveyed in remote condition, security measurements turns out to be most encouraging test where correspondence wirelesses systems confronting today. The Stable Election Protocol (SEP) is an enhanced algorithm of Adaptive Clustering Hierarchy (LEACH) with low energy in heterogeneous Wireless Sensor Network (WSN) for improving the life cycle. Be that as it may, the unequal energy circulation of cluster heads and nodes would diminish the lifetime. From one perspective, adding node vitality to cluster head selection to decrease the energy utilization of cluster heads; on the contrary, decline the energy utilization of nodes in cluster through not directly transmitted by interlude nodes. SEP, a protocol of heterogeneous-aware to drag out the time interim before the passing of the first node (we allude to as steady period), which is essential for some applications where the input from the sensor arrange must be solid. SEP depends on weighted election decision probabilities of every node to turn into cluster head as indicated by the rest of the energy in every node. The outcomes show that the E-SEP protocol functions admirably in adjusting the vitality utilization for improving the lifetime looking at LEACH and SEP protocol with enhanced SEP along with proposed E-SEP algorithm using MATLAB.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5281 ◽  
Author(s):  
Jin-Gu Lee ◽  
Seyha Chim ◽  
Ho-Hyun Park

Extending the lifetime and stability of wireless sensor networks (WSNs) through efficient energy consumption remains challenging. Though clustering has improved energy efficiency through cluster-head selection, its application is still complicated. In existing cluster-head selection methods, the locations where cluster-heads are desirable are first searched. Next, the nodes closest to these locations are selected as the cluster-heads. This location-based approach causes problems such as increased computation, poor selection accuracy, and the selection of duplicate nodes. To solve these problems, we propose the sampling-based spider monkey optimization (SMO) method. If the sampling population consists of nodes to select cluster-heads, the cluster-heads are selected among the nodes. Thus, the problems caused by different locations of nodes and cluster-heads are resolved. Consequently, we improve lifetime and stability of WSNs through sampling-based spider monkey optimization and energy-efficient cluster head selection (SSMOECHS). This study describes how the sampling method is used in basic SMO and how to select cluster-heads using sampling-based SMO. The experimental results are compared to similar protocols, namely low-energy adaptive clustering hierarchy centralized (LEACH-C), particle swarm optimization clustering protocol (PSO-C), and SMO based threshold-sensitive energy-efficient delay-aware routing protocol (SMOTECP), and the results are shown in both homogeneous and heterogeneous setups. In these setups, SSMOECHS improves network lifetime and stability periods by averages of 13.4%, 7.1%, 34.6%, and 1.8%, respectively.


Author(s):  
Asgarali Bouyer ◽  
Abdolreza Hatamlou

Wireless Sensor Networks (WSNs) consist of many sensor nodes, which are used for capturing the essential data from the environment and sending it to the Base Station (BS). Most of the research has been focused on energy challenges in WSN. There are many notable studies on minimization of energy consumption during the process of sensing the important data from the environment where nodes are deployed. Clustering-based routing protocols are an energy-efficient protocols that improve the lifetime of a wireless sensor network. The objective of the clustering is to decrease the total transmission power by aggregating into a single path for prolonging the network lifetime. However, the problem of unbalanced energy consumption exists in some cluster nodes in the WSNs. In this paper, a hybrid algorithm is proposed for clustering and cluster head (CH) election. The proposed routing protocol hybridized Penalized Fuzzy C-Means (PFCM) and Self Organization Map (SOM) algorithms with LEACH protocol for the optimum numbers of the CHs and the location of them. Simulation results reveal that the proposed algorithm outperforms other existing protocols in terms of network life, number of dead sensor nodes, energy consumption of the network and convergence rate of the algorithm in comparison to the LEACH algorithm.


2014 ◽  
Vol 665 ◽  
pp. 745-750
Author(s):  
Qi Gong Chen ◽  
Yong Zhi Wang ◽  
Li Sheng Wei ◽  
Wen Gen Gao

Energy consumption is a hot issue in WSNs (Wireless Sensor Networks). In this paper, we present an improved clustering algorithm. By changing the order of traditional WSNs clustering algorithm, this algorithm uses k-means clustering firstly base on optimal number of cluster head is determined; Then selects cluster head by an improved LEACH (Low Energy Adaptive Clustering Hierarchy) algorithm; Finally, Our experimental results demonstrate that this approach can reduces energy consumption and increases the lifetime of the WSNs.


2010 ◽  
Vol 11 (1) ◽  
pp. 51-69
Author(s):  
S. M. Mazinani ◽  
J. Chitizadeh ◽  
M. H. Yaghmaee ◽  
M. T. Honary ◽  
F. Tashtarian

In this paper, two clustering algorithms are proposed. In the first one, we investigate a clustering protocol for single hop wireless sensor networks that employs a competitive scheme for cluster head selection. The proposed algorithm is named EECS-M that is a modified version to the well known protocol EECS where some of the nodes become volunteers to be cluster heads with an equal probability.  In the competition phase in contrast to EECS using a fixed competition range for any volunteer node, we assign a variable competition range to it that is related to its distance to base station. The volunteer nodes compete in their competition ranges and every one with more residual energy would become cluster head. In the second one, we develop a clustering protocol for single hop wireless sensor networks. In the proposed algorithm some of the nodes become volunteers to be cluster heads. We develop a time based competitive clustering algorithm that the advertising time is based on the volunteer node’s residual energy. We assign to every volunteer node a competition range that may be fixed or variable as a function of distance to BS. The volunteer nodes compete in their competition ranges and every one with more energy would become cluster head. In both proposed algorithms, our objective is to balance the energy consumption of the cluster heads all over the network. Simulation results show the more balanced energy consumption and longer lifetime.


2016 ◽  
Vol 12 (10) ◽  
pp. 45
Author(s):  
Cunjiang Yu

<p><span style="font-family: Times New Roman; font-size: small;">This paper carries out research on two types of event-driven data collection protocols of wireless sensor networks: EDDGP and ACBP protocols. In the EDDGP protocol, an adaptive evaluation model is put forward to select the cluster head, including the node classification, the fuzzy grade classification, the evaluation function and the parent grid resolution. Once an event of interest occurs, the member nodes will send the collected information to the cluster heads which will then integrate the data and send a </span><span style="font-family: Times New Roman; font-size: small;">request packet for data collection</span><span style="font-family: Times New Roman; font-size: small;"> to the sink. After receiving the request packet, the sink will quickly move to the cluster head for collecting information. If the sink receives the request packet for data collection from other cluster heads of information source in the moving process, it will save their grid ID. </span><span style="font-size: small;"><span style="font-family: Times New Roman;">The data from the other cluster heads of information source are collected in turn from the nearest ones to the farthest ones. The theoretical research and simulation results show that EDDGP can reduce the energy consumption of location updates of the sink so as to balance the energy consumption of nodes and prolong the lifetime of the network.</span></span></p>


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mingxin Yang ◽  
Jingsha He ◽  
Yuqiang Zhang

Due to limited resources in wireless sensor nodes, energy efficiency is considered as one of the primary constraints in the design of the topology of wireless sensor networks (WSNs). Since data that are collected by wireless sensor nodes exhibit the characteristics of temporal association, data fusion has also become a very important means of reducing network traffic as well as eliminating data redundancy as far as data transmission is concerned. Another reason for data fusion is that, in many applications, only some of the data that are collected can meet the requirements of the sink node. In this paper, we propose a method to calculate the number of cluster heads or data aggregators during data fusion based on the rate-distortion function. In our discussion, we will first establish an energy consumption model and then describe a method for calculating the number of cluster heads from the point of view of reducing energy consumption. We will also show through theoretical analysis and experimentation that the network topology design based on the rate-distortion function is indeed more energy-efficient.


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


Sign in / Sign up

Export Citation Format

Share Document