Effect of Doping Nb2O5 on Microstructure and Properties of Piezoelectric Ceramics PSZT

2012 ◽  
Vol 217-219 ◽  
pp. 1182-1185 ◽  
Author(s):  
Ling Peng ◽  
Qi Bin Liu

o improve the electrical properties of PSZT piezoelectric ceramics, a ceramic powder Pb0.94Sr0.06(Zr0.52Ti0.48)O3 (PSZT) with Nb2O5 was designed. The power was prepared by solid state sintering. The surface structure of sample was characterized using SEM, and the crystal structure of the sample was examined by XRD. The capacitance and dielectric loss of sample was measured by Tonghui Electronics TH2618 capacitor tester. The result of microstructure and electrical properties show that Nb2O5 inhibit crystal growth when the contents of Nb2O5 is less than 0.5.wt%, but excessive Nb2O5 cause pyrochlore phase producing while the contents of Nb2O5 more than 0.5wt.% . The excellent piezoelectric properties are achieved in the ceramics with 0.5wt.% Nb2O5:εr=1504,tanδ=0.0065,d33=336pC/N, kp=0.562.

2011 ◽  
Vol 492 ◽  
pp. 194-197 ◽  
Author(s):  
Yue Fang Wang ◽  
Xiu Jie Yi ◽  
Wei Pan ◽  
Guo Zhong Zang ◽  
Juan Du

Lead-free (1-x-y)Na1/2Bi1/2TiO3-xBaTiO3-yBiFeO3 ceramics were synthesized by ordinary sintering technique. The compositional dependence of phase structure and electrical properties of the ceramics was systematically investigated. All samples possessed pure perovskite structure. The dielectric and piezoelectric properties of ceramics were investigated with the amount of different BiFeO3 substitutions. The addition of BiFeO3 can not only decrease Ec and Pr but also lead to a significant degradation of the dielectric loss tanδ.


2013 ◽  
Vol 634-638 ◽  
pp. 2345-2348 ◽  
Author(s):  
Hong Mei Zhang ◽  
Shao Bo Qu ◽  
Jing Bo Zhao ◽  
Hong Liang Du

(1-X)K0.5Na0.5NbO3–xBiGaO3[(1-X)KNN-Xbg] Lead-Free Ceramics with Different Additive of Bigao3 Were Synthesized by Conventional Solid-State Sintering Technique. Dielectric, Piezoelectric and Ferroelectric Properties of (1-X)KNN-Xbg Lead-Free Ceramics Were Studied. it Is Found that the Piezoelectric Properties Was Improved due to the Additive Bigao3,The Ceramics X=0.01 near Room Temperature Exhibit Excellent Electrical Properties D33=152pC/N, TC=372 °C. these Results Indicate that Bigao3 Adjusted K0.5Na0.5NbO3-Based Ceramics Materials Are Promising Lead-Free Piezoelectric Ceramic Candidates for Practical Applications.


2014 ◽  
Vol 887-888 ◽  
pp. 299-304
Author(s):  
Meng Meng Jia ◽  
Jian Ma

0.95(Na0.95-xKxLi0.05)(Nb0.90Sb0.05Ta0.05)O3-0.05KNbO3 lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, the effects of K/Na ratio on the structure and electrical properties of the ceramics were studied in detail. The results show that the addition of the pre-calcined KNbO3 powder as sintering aid is very effective to improve the density and sinterability, and the ceramics could be well sintered at reduced temperature of 1060 °C as compared with the relatively higher sintering temperature of Li, Sb, Ta modified KNN ceramics reported in the literature at 1100-1220 °C. The ceramics with x=0.44 possess the optimal properties: d33=231 pC/N, kp= 47 %, Pr= 22 μC/cm2, and Ec= 11.4 kV/cm.


2010 ◽  
Vol 654-656 ◽  
pp. 2037-2040
Author(s):  
Ming He Cao ◽  
Zhuo Li ◽  
Fan Li ◽  
Hua Hao ◽  
Han Xing Liu

Lead-free (1-x)K0.5Na0.5NbO3–xLiNbO3 piezoelectric ceramics have been prepared by a conventional solid state process. The phase structure and the electrical properties of the ceramics were studied. A polymorphic phase transition (PPT) between the orthorhombic and tetragonal phases was identified in the composition range of 0.08<x<0.10. The ceramics near the PPT show better piezoelectric properties. At a level of 10mol% LiNbO3, the sample sintered at 1100oC for 1h exhibits optimal piezoelectric properties.


Author(s):  
Phan Gia Le ◽  
Huyen Tran Tran ◽  
Jong-Sook Lee ◽  
John G. Fisher ◽  
Hwang-Pill Kim ◽  
...  

AbstractCeramics based on (Na1/2B1/2)TiO3 are promising candidates for actuator applications because of large strains generated by an electric field-induced phase transition. For example, the (1−x)(Na1/2Bi1/2)TiO3-xSrTiO3 system exhibits a morphotropic phase boundary at x = 0.2–0.3, leading to high values of inverse piezoelectric constant d*33, which can be further improved by the use of single crystals. In our previous work, single crystals of (Na1/2B1/2)TiO3-SrTiO3 and (Na1/2B1/2)TiO3-CaTiO3 were grown by the solid state crystal growth technique. Growth in the (Na1/2B1/2)TiO3-SrTiO3 system was sluggish whereas the (Na1/2B1/2)TiO3-CaTiO3 single crystals grew well. In the present work, 0.8(Na1/2Bi1/2)TiO3-0.2(Sr1−xCax)TiO3 single crystals (with x = 0.0, 0.1, 0.2, 0.3, 0.4) were produced by the solid state crystal growth technique in an attempt to improve crystal growth rate. The dependence of mean matrix grain size, single crystal growth distance, and electrical properties on the Ca concentration was investigated in detail. These investigations indicated that at x = 0.3 the matrix grain growth was suppressed and the driving force for single crystal growth was enhanced. Replacing Sr with Ca increased the shoulder temperature Ts and temperature of maximum relative permittivity Tmax, causing a decrease in inverse piezoelectric properties and a change from normal to incipient ferroelectric behavior.


2018 ◽  
Vol 280 ◽  
pp. 142-148 ◽  
Author(s):  
Norhizatol Fashren Muhamad ◽  
Rozana Aina Maulat Osman ◽  
Mohd Sobri Idris ◽  
Faizal Jamlos ◽  
Nor Azura Malini Ahmad Hambali

Present investigation provides experimental studies on cylindrical dielectric resonator antennas (CDRAs) fabricated from SrTi1-xZrxO3ceramic with different substitution of Zr in place of Ti for (0 ≤ x ≤1). Ceramic powder were prepared using conventional solid state reaction method. X-ray Diffraction exposes physical properties Zr-doped SrTiO3which exhibit phase transition from cubic, tetragonal to orthorhombic phase. The electrical properties such as dielectric constant (εr) and dielectric loss (tan δ) were studied in variation of temperatures and frequencies. At room temperature the dielectric constant decreased from 240 to 21 with increase of Zr content however the amazing result was obtained for multiband antenna by Zr content. The dielectric loss obtain shows very low loss value roughly below 0.07 for all samples. The variations of return loss, resonance frequency and bandwidth of CDRAs at their respective resonant frequencies are studied experimentally.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2357 ◽  
Author(s):  
Le ◽  
Fisher ◽  
Moon

The (1−x)(Na1/2Bi1/2)TiO3-xSrTiO3 (NBT-100xST) system is a possible lead-free candidate for actuator applications because of its excellent strain vs. electric field behaviour. Use of single crystals instead of polycrystalline ceramics may lead to further improvement in piezoelectric properties but work on single crystal growth in this system is limited. In particular, the effect of composition on single crystal growth has yet to be studied. In this work, single crystals of (NBT-100xST) with x = 0.00, 0.05, 0.10 and 0.20 were grown using the method of Solid State Crystal Growth. [001]-oriented SrTiO3 single crystal seeds were embedded in (NBT-100xST) ceramic powder, which was then pressed to form pellets and sintered at 1200 °C for 5 min–50 h. Single crystal growth rate, matrix grain growth rate and sample microstructure were examined using scanning and transmission electron microscopy. The results indicate that the highest single crystal growth rate was obtained at x = 0.20. The mixed control theory of grain growth is used to explain the single crystal and matrix grain growth behaviour.


2014 ◽  
Vol 87 ◽  
pp. 12-17
Author(s):  
Fares Kahoul ◽  
Louanes Hamzioui ◽  
Ahmed Boutarfaia

The phase structure, microstructure and electrical properties of (1-x)Pb (ZryTi1-y)O3-xSm(Fe3+0.5,Nb5+0.5)O3(PZT–SFN) (with x = 2 %, 41%≤ y ≤57 %) piezoelectric ceramics were prepared by the conventional solid state method, and effects of SFN and the Zr/Ti ratio content on the piezoelectric properties of PZT ceramics were mainly investigated. A stable solid solution has been formed between PZT and SFN, and a morphotropic phase boundary of PZT–SFN ceramics is identified in the range of 51% ≤ y ≤55 %. The Curie temperature of PZT–SFN ceramics decreases with increasing at Zr/Ti ratio content. A higher εrvalue and a lower tanδ value are demonstrated for the PZT–SFN ceramics with y = 53 %. The PZT–SFN ceramics with y = 53 % has an enhanced electrical behavior of kp~ 61.2 %, Qm~ 104, εr~ 566, tanδ ~ 2.02 % and TC~ 370OC. As a result, PZT–SFN ceramics are promising candidate materials for the field of lead piezoelectric materials and piezoelectric device.


2014 ◽  
Vol 979 ◽  
pp. 302-306 ◽  
Author(s):  
Chalermpol Rudradawong ◽  
Aree Wichainchai ◽  
Aparporn Sakulkalavek ◽  
Yuttana Hongaromkid ◽  
Chesta Ruttanapun

In this paper, the CuFeO2compound were prepared by classical solid state reaction (CSSR) and direct powder dissolved solution (DPDS) method from starting material metal oxides and metal powders. Preparation of two methods shows that, direct powder dissolved solution faster recover phases than classical solid state reaction method. The fastest method gets from starting materials Cu and Fe metal powders, the electrical conductivity, Seebeck coefficient, carrier concentration and mobility are 10.68 S/cm, 244.59 μV/K, 12.86×1016cm-3and 494.96 cm2/V.s, respectively. In addition, each CuFeO2compounds were investigated on crystal structure and electrical properties. From XRD and SEM results, all samples have a crystal structure delafossite-typeand a large grain boundary more than 15 μm by electrical conductivity corresponds to grain boundary and lattice parameter: a increases. Within this paper, from above results exhibit that preparation CuFeO2from Cu and Fe by direct powder dissolved solution method most appropriate for thermoelectric oxide materials due to high active for preparation else high lattice strain and high power factor are 0.00052 and 0.64×10-4W/mK2, respectively.


Sign in / Sign up

Export Citation Format

Share Document